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ABSTRACT. 

This paper defines the medium term as the residual component of time series after extracting 

secular trend and seasonal variation. To select an optimal detrending method, I apply a 

distance metric, which measures the distortionary effect of linear filters on the spectrum of 

detrended time series. In particular, the metric identified substantial distortions of 

conventional detrending methods, including first-differencing and deterministic linear 

detrending. After examining major detrending methods, the paper singles out the Hodrick-

Prescott  and Baxter-King filters as the least-distorting ones. The paper also illustrates the 

consequences of alternative approaches to detrend data by estimating the Almost Ideal 

Demand System in Japan for major consumption categories. As predicted by the distance 

metric, first – differencing introduced an excessive noise in the spectrum of detrended data, 

which resulted in the ‘masking’ of significant relationships  in the estimated demand system. 

In contrast, detrending with Hodrick-Prescott and (sigma-adjusted) Baxter-King filters 

produced estimates that avoided the excesses of deterministic linear detrending and first 

differencing.  
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Introduction. 

The Almost Ideal Demand System (AIDS) of Deaton and Muellbauer (1980) has become a 

widespread tool for analyzing consumer behavior. However, many of its applications to time 

series data fail to account properly for the trending nature of price and income variables, 

producing results that are often typical for spurious regressions
1
. This outcome was recently 

verified by Ng (1997), who demonstrated that the commonly occurring persistence in the 

estimated residuals of the Almost Ideal Demand System may be an indicator of unit root 

(non-stationarity) in prices and income.  

To avoid the problem of non-stationary data, the most common solution is to first-

difference the original time series. This transformation removes the unit root, but it also 

amplifies  high-frequency component of time series, obscuring significant relationships at the 

medium frequency band, as was illustrated by Baxter (1994). Besides, the first-differencing is 

appropriate for removing only stochastic trend, and induces the over-differencing effect when  

the deterministic trend is present. However, in practice it is difficult to differentiate between 

deterministic and stochastic trends, due to the low power of conventional unit root tests, and 

also due to the observational equivalence of DS and TS processes in finite samples (Campbell 

and Perron, 1991).  

In this paper I point  out the advantages of an alternative approach to detrend time 

series. The approach relies on optimal symmetric linear filters as a flexible and robust tool to 

extract both deterministic and stochastic trends, thus making redundant the problematical 

distinction between DS and TS processes in finite samples. Such filters were suggested by 

Hodrick, Prescott  (1980, 1997) and Baxter, King (1999). As shown by King, Rebelo (1993) 

and Baxter, King (1999), the Hodrick-Prescott (HP) and Baxter-King (BK) filters not only 

                                                 
1
 Such as the combinations of high R

2
 and  low Durbin-Watson statistics in Deaton and Muellbauer (1980). 
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extract the deterministic linear trend, but also can render stationary integrated processes up to 

order I(4) and I(2), respectively.  

Yet, these filters have been often criticized by Harvey, Jaeger (1993), Cogley, Nason 

(1995) and Guay, St-Amant (1997) and others for generating spurious cycles (i.e., “Slutsky 

effect”) and for amplifying the spectrum of detrended data, especially at business cycle 

frequencies. Addressing the criticism, I propose in this paper a simple modification to the BK 

filter (based on the Lanczos’ σ-factors) which greatly alleviates spurious oscillations in the 

spectrum of detrended data.  

To evaluate the alleged distortionary effect of HP and BK filters, I modify a distance 

metric, previously put forward by Pedersen (1998),  and apply it to the identification of the 

least distorting filter among available detrending methods. Then the paper illustrates possible 

consequences of applying distortionary detrending methods by estimating the Almost Ideal 

Demand System for major consumption categories in Japan.  While Canova (1998) made a 

similar comparison of detrending methods with respect to the “stylized facts” of real busyness 

cycle theory, the sensitivity study in the context of regression analysis seems to be a novel 

contribution. 

The paper is organized as follows. Section 1 briefly discusses properties of 

conventional linear filters, focusing on their ability to remove unit root and to approximate the 

ideal high-pass filter. Section 2 introduces the modified version of Pederson’s metric to 

measure distortionary effects of linear filters, and applies the metric to major detrending 

methods. Section 3 briefly outlines the specification of the Almost Ideal Demand System. 

Section 5 reports results of the sensitivity study with different detrending methods. Section 6 

concludes.  
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Section 1. Design of optimal high-pass filters. 

Let tx  be zero mean stationary process with autocorrelation functions ),cov()( sttx xxs  . 

Define the autocorrelation generating function by 





s

s

xx zszg )()(  . Then population 

spectrum (i.e., power spectral density function) is given by  

iws

s

x

iw

xx esegwS 




  )(
2

1
)(

2

1
)( 


                                                       (1) 

where ],[ w denotes frequency in radians
2
, and i is an imaginary number 1 . 

Population spectrum is a convenient decomposition of the population variance by 

discrete frequencies w, with the integral from  to   summing up to the variance of tx : 

2

0

)0()(2)( 




 


xxx dwwSdwwS                                                     (2) 

Thus, the area under the population spectrum )(wS x  equals to the variance of tx .  

Define linear filter as a weighted moving average  of tx  with weights sh : 







s

stst xhy , 

with the constraint 


~s

sh  to assure that the variance of the transformed variable ty  is 

finite. Symmetric filters are identified as ones having weights ss hh  . The majority of linear 

filters considered in the paper are symmetric, with the exception of asymmetric first 

differencing filter (since its weights are 1oh  and 11 h , and zero otherwise).  

A well-known result in the frequency-domain analysis relates the population spectrum 

of filtered output ty  to the population spectrum of input tx  and the frequency response 

function )(wH . The latter, in turn, is calculated by the Fourier transform of filter weights sh :  

                                                 
2
 So that if p is cycle’s period, then w=2π/p. 
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




 
s

iws

s

iw ehehwH )()(                                                                      (3) 

Then the spectrum of output )(wS y  is related to the spectrum of input )(wS x  by 

)()()(
2

wSwHwS xy                                                                                 (4) 

where )(wH  denotes the frequency transfer function of linear filter with weights sh , while 

2
)(wH  denotes the power transfer function of the linear filter. These )(wH and 

2
)(wH  are 

very convenient for  evaluating consequences of filtering. In particular, )(wH  quantifies how 

a linear filter affects the standard deviation of output ty   at frequency w (compared with the 

corresponding variance of input tx ). Similarly, 
2

)(wH  deals with the effect on the variance 

of ty . 

Since secular trend is essentially the low-frequency component of time series, the 

power transfer function is useful in the design of optimal filters that remove the low 

frequency band without affecting the variance at other frequencies. Such filters are called 

high-pass filters. In particular, I define the trend component of time series as one with period 

of 32 quarters and longer (with the corresponding frequency band 16/0 0  w ). This 

cutoff frequency was also selected by Baxter and King (1999),  who justified the  choice by 

reference to the average duration of US business cycles that rarely exceeded 32 quarters (as 

defined by the NBER chronology). The cutoff of 32 quarters has become widely shared 

among other business-cycle researchers.
3
.  

The removal of secular trend can be achieved by the high-pass filters that eliminate 

low-frequency component of time series (with frequencies up to 0w ) and ‘pass through’ the  

                                                 
3
 Hassler, Lundvik, Persson, and Söderlind (1994) and Stock, Watson (1999) also selected 32 quarters as a cutoff 

between the secular trend and business cycle components. On the other hand, Canova (1998) postulated the 

cutoff of 30 quarters.  
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high-frequency component without affecting its spectrum for frequencies in excess of 0w . 

The ideal high-pass filter then has power transfer function 

0

0
2

0

1
)(

wwif

wwif
wH HP 


                                                                (5) 

The construction of the ideal filter requires the infinite sequence of filter weights sh , 

which in practice is not possible due to the finite length of available observations (Koopmans, 

1995, p. 177). However, the ideal 
2

)(wH   can be used as a benchmark to evaluate the 

distorting effect of high-pass filters with finite (truncated) filter weights.  

Consider the power transfer functions of major linear filters and their relationship with  

ideal power transfer function 
2

)(wH  .  

1) Symmetric moving average filter.  

Define MA(m) as a moving average filter with weights truncated to m. Then )(mMALP  is a 

low-pass filter that determines the trend component g

tx  as follows: 

 
 





m

ms

m

ms

ststs

g

t x
m

xhx
12

1
,  

from which the cyclical component of tx  is given by g

tt

c

t xxx  .  

Frequency response function of )(mMALP  filter equals  

 

,)cos(21
12

1

...1...
12

1
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1

)1(





























m

s

m
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iwmiwiwmiwiwmiws

s

ws
m

eeeee
m

ehwH

             (6) 

where the last expression is based on the identity )cos(2 wee iwiw  .  

It follows that the power transfer function of the high-pass moving average filter 

)(mMAHP is given by 

2

1

)cos(21
12

1
1 





















 



m

s

ws
m

. In particular, consider the effect of 
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)(mMAHP  on the unit root component of time series (which corresponds to zero frequency). 

Since 1)0cos(  , 
2

)(wH  of the )(mMAHP  filter is also zero. In other words, the high-pass 

filter )(mMAHP removes the unit-root component in the spectrum of output time series c

tx , 

and this property is preserved for any choice of m.  

Panel 1 of fig. 1 plots  
2

)(wH  of the )12(HPMA  and )20(HPMA  filters, as well as 

2

)(wH    of the ideal filter with 16/0 w . Though for both filters 0)0(
2
H , the MA 

filters also induce substantial oscillatory movements in the spectrum of c

tx . Such oscillations 

demonstrate the so - called Gibbs effect, which is typical for Fourier series approximations of 

a discontinuous function, such as the one, given by (5).  

2) First difference filter.  

As previously noted, this filter can be considered as an asymmetric MA filter with weights 

1oh  and 11 h , and zero otherwise. From (6) it follows that the filter’s frequency 

response function is iwewH 1)( , and its power transfer function is 

  )cos(221)(
22

wewH iw   . Panel 2 of figure 1 plots 
2

)(wH  of the first difference 

filter together with 
2

)(wH  of deterministic linear detrending.  

Similarly to )(mMAHP , the first differencing removes unit root, but it also 

substantially amplifies the variance of output time series at high frequencies, introducing 

extra noise in the filtered data. Also note that 
2

)(wH  of first difference filter is much less 

than unity for the frequency band 8/16/   w  (which corresponds to cycles between 4 

and 8 years), demonstrating the so-called “compression effect” (as defined by Baxter and 

King (1999)) on the variance of detrended data at business cycle frequencies.  
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On the other hand, 
2

)(wH  of deterministic linear detrending does not involve any 

reweighing of frequencies. In particular, since its 0)0(
2
H , the simple detrending 

procedure does not remove unit root component of time series.  

3) Approximate ideal high-pass filter.  

Weights 

sh  for the filter are calculated by the inverse Fourier transform of )(wH   for the 

ideal low-pass filter: 

0

0

0

1
)(

wwif

wwif
wH LP 


                                                                     (7)  

with 

sh  calculated by  




 


 j

s jdwwHh ,...3,2,1,0,)(
2

1
                                              (8) 

It can be shown (Granger, Hatanaka (1964), p. 137; Koopmans, 1995, p. 177) that 

sh  

in (8) can be expressed by 










,...,2,1)/()sin(
0/

0

0

sforssw
sforw

hs 


                                     (9) 

Then the high-pass version of the ideal filter )(HPI  can be obtained by subtracting 

the output of the ideal low-pass filter )(LPI from the original time series (i.e., similar to the 

case of MA
HP

(m) filter). 

The optimality of )(HPI  depends on the assumption of the infinite sequence of filter 

weights 

sh . After filter weights are truncated for some m (so that 0

sh  for ms  ), the 

finite approximation to the ideal filter AI
HP

(m) will differ substantially from its infinite 

version )(HPI  (Koopmans, 1995, p. 179). Nevertheless, the comparison of power transfer 

functions of  MA
HP

(12) and AI
HP

(12) (panel 1 of fig. 2) demonstrates that AI
HP

(12) has much 

smaller oscillations in 
2

)(wH . On the other hand, the approximate high-pass filter fails to 
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remove the unit root component in time series. For instance, 016.0)0(
2
H  for AI

HP
(12), 

and 014.0)0(
2
H  for AI

HP
(20), as shown in the second row of Table 1a.  

4) Baxter-King high-pass filter.  

The filter is derived from AI
HP

(m) filter, with the additional constraint on filter weights, 

designed to eliminate the unit-root component of time series. To preserve the unit-root 

eliminating property 0)0(
2
H , the necessary and sufficient condition for high-pass filters 

is 0



m

ms

sh  (King, Rebelo (1993), p. 216; Baxter, King (1999), p. 592). Conversely, the 

condition for low-pass filters is 1



m

ms

sh .  

The latter restriction is imposed by adjusting the weights 

sh  of the ideal low-pass 

filter (9): 

12

1
~














m

h

hh

m

ms

s

ss                                                                                       (10)                                                   

for each 

sh . With these weights we obtain the Baxter-King low-pass filter BK
LP

(m). The 

output of the corresponding high-pass filter BK
HP

(m) can be obtained by subtracting the 

output of BK
LP

(m) from the original time series. An alternative approach is to change the filter 

weights of BK
LP

(m) as follows:   ss hz
~

1~  for 0s , and otherwise   ss hz
~~ . Then  

0~ 



m

ms

sz for high-pass filters is satisfied automatically, and the output of BK
HP

(m) is derived 

directly by the application of filter weights 

sz~  to the original time series. 

Panel 2 of figure 2 compares power transfer functions of AI
HP

(12) and BK
HP

(12) filters. 

The difference between 
2

)(wH  of these filters is rather small, except that now 0)0(
2
H  

for BK
HP

(12) filter (see also the second raw of Table 1b).  
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5) Baxter-King high-pass filter with “sigma correction”. 

As shown in panel 2 of figure 2, BK
HP

(12) BK
HP

(12) still exhibits significant side lobs (the 

Gibbs effect) due to the discontinuity in )(wH LP

  in (7) at frequency 0w . It is possible to 

alleviate the distortionary effect by replacing the discontinuous )(wH LP

  by a smoother 

function that changes less abruptly from one to zero in the neighborhood of 0w . This was the 

motivation behind the Lanczos’ σ-factors, designed to accelerate the convergence of Fourier 

series at a discontinuous point (Hamming, 1973, p. 534; Bloomfield, 2000, p. 112).   

To calculate filter weights in BK
HP

(m) filter with σ-adjustment (referred hereafter as 

BKS
HP

(m),  proceed as follows: 

1. For a given truncation parameter m, calculate filter weights 

sh  by (9). 

2.  Compute  smss hh , , where 
)1/(2

)12/()2sin(
,






ams

ms
ms




 is the Lanczos’ σ-factor. 

3. Apply Baxter-King adjustment (10) to 

sh  to satisfy 0)0(
2
H . 

4. Change filter weights as follows: 
ss hz

~
1~   for 0s , and otherwise   ss hz

~~ . 

5. Apply 
sz~  in the symmetric MA(m) filter with m leads and lags

4
. 

Figure 3 plot power transfer functions of  BKS
HP

(12) and BKS
HP

(20) filters. In both filters the 

σ-adjustment makes spurious oscillations much less pronounced.  Besides, for frequencies 

below 16/0 w  the power transfer function of BKS
HP

(12) is nearer to zero than the one of 

BK
HP

(12). In other words,  BKS
HP

(12) has a smaller “leakage” of the frequencies which it is 

designed to suppress. Conversely, the BKS
HP

(20) filter does not reduce leakage at frequencies 

below 0w , (panel 2 of figure 3), reducing the benefit of σ-adjustment for 20m .  

                                                 
4
 Filter weights for BK

HP
(m) and BKS

HP
 (m) filters (m=12,16, 20) are given in table 2. 
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6) Hodrick-Prescott (HP) filter. Properties of the filter have been extensively discussed in the 

literature. Harvey, Jaeger (1993) showed the filter is optimal for the following Unobserved 

Components model: 

ttt

t

g

t

g

t

c

t

g

tt

xx

xxx













1

11  

with c

tx  (the cycle  component) )NID(0, 2

c ,  )NID(0,~ 2

g , and t  assumed independent 

of c

tx . Under these conditions the smoothing parameter of HP filter becomes 22

gc   . In 

the case of quarterly data, Hodrick, Prescott (1980, 1997) postulated 1600 , making 

reference to their “prior view” that 5 per cent standard deviation of c

tx  is as large as 1/8 per 

cent standard deviation of t . This essentially arbitrary choice of   was often criticized. For 

example, Nelson, Plosser (1982, p. 257) estimated that   was likely to be constrained 

between five and six. Similarly, Pedersen (1998) calculated the optimal   for a wide range of 

AR(1) and AR(2) models, and found it most often in the range of 1000-1050.  

King, Rebelo (1993) interpreted the HP filter as a symmetric MA filter with a 

frequency transfer function  for the cyclical component 

2

2

)]cos(1[41

)]cos(1[4
)(

w

w
wH









                                                                (11) 

The HP filter removes unit root (regardless any value of parameter  , 0)0( H ). Besides, 

the power transfer function of the filter quickly approaches unity for frequencies above 

16/0 w , as shown in panel 1 of figure 4 (for the case of 1600 ). However, compared 

with BKS
HP

(12) filter, the leakage of HP(1600) is larger for frequencies 16/w . On the 

other hand, when  is set to 1000
5
,  the power HP(1000) filter is closer to the ideal high-pass 

filter at low frequencies (panel 2 of figure 4). On the other hand,  the less optimal shape of 
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2
)(wH  of HP(1000) for 16/w  is less of a concern. Not a great deal of power is 

concentrated at these high frequencies in “typical spectral shape” of economic series (Granger, 

1964), thus alleviating resulting distortions to the spectrum of output series.  

It is often negleceted that (11) for Hodrick-Prescott filter was derived under the 

assumption of infinite span of available observations. In finite samples the filter’s weights are 

limited by the sample size, so the 
2

)(wH of HP filter may differed substantially from the 

pattern, depicted in figure 4. The disparity is especially pronounced for observations at both 

ends of sample, as illustrated by Baxter, King (1999). Due to the lack of finite-sample 

counterpart for formula (11), this formula will be used in the paper. Yet it is important to 

remember that the asymptotic formula provides essentially only the lower bound on the 

distortionary effect of HP filter, which can be somehow larger in finite samples. Besides HP 

filter, no other linear filters which were discussed in this section, requires an  asymptotic 

justification to derive its power transfer function. 

Section 2. Pedersen’s metric to measure distortions of linear filters. 

In this section I will compare the distortionary effects of major linear filters, using a modified 

version of a distance metric, put forward by Pedersen (1998). The metric compares the output 

spectrum )(wS y  of a linear filter to the corresponding output spectrum )(wS y

  of the ideal 

high-pass filter 

HPH  , as given by (5).  

Let )()()(
2

wSwHwS xHPy

   be the spectrum of output at frequency w after applying 

the ideal high-pass filter. Using the ideal filter as a benchmark, the distortion in the spectrum 

of output time series )(wS y at frequency w is given by  

)()()()()()(
22

wSwHwHwSwSwS xHPHPyyy                                  (12) 

                                                                                                                                                         
5
 Which is in the range of optimal  , recommended by Pedersen (1998). 
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Integrating (12) over ],[ w  yields Pedersen’s metric of the distortionary effects of 

linear filters on  )(wS y  for the whole frequency interval:  

dwwSwHwHdwwSdwwSQ xHPHPyy   





 0

22

0

)()()(2)(2)(                 (13) 

where 1 ii wwdw . 

The Q-statistic depends on  the difference between power spectral functions of an evaluated 

and the ideal high pass filter, which is weighted by the spectrum )(wS x of input time series
6
.  

Using  (2), )(wS y

  can be interpreted as the true variance of the cyclical component of 

tx . Thus, the Q-statistic essentially measures how these true and estimated variances are close 

to each other, with less distorting filters producing smaller values of the Q-statistics. 

Pedersen (1998) applied the Q-statistic for the comparison of major linear filters. Input 

time series were represented by several  AR(1) and AR(2) processes, for which analytical 

expressions for )(wS x  are available. In contrast, I suggest to calculate the statistic with the 

estimated spectrum )(ˆ wS x of  actual time series, using both non-parametric and parametric 

approaches. Then one can check the sensitivity of relative ranking by Q-statistic to the 

alternative approaches to estimate )(ˆ wS x .  

The original version of Q-statistic is not normalized, so it is particularly informative 

on the extend of relative distortions among investigated linear filters. One approach, similar to 

the R
2
-statistic, is to normalize (13) by )(wS y

 . However, since )(wS y

  would be the same for 

a given )(wS x , it is also not particularly useful.  

                                                 

6
 Pedersen (1998) suggested to downweight Sx(w) by the variance 




0

)(2)0( dwwS xx , but this adjustment 

makes no difference to the ranking of different filters (since they are compared with respect to the same input 

series). 
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Given that the Q-statistics would be normally calculated for several alternative filters, 

resulting in a set of  pQQQ ...,,, 21  statistics, I suggest to normalize them by the minimum Q-

statistics among these p linear filters.   

To evaluate linear filters, which were discussed in section 1, I utilize as input time 

series tx  the actual data that will be further  used for the estimation of Almost Ideal Demand 

System in Japan. These time series included consumption shares iSh  and price deflators iP   

for eight major consumption commodities
7
, as well as real income Inc.   

Q-statistics for these time series were calculated with three alternative estimates of 

)(ˆ wS x : Welch’s overlapping segment method, Thompson’s multitaper method (both – non-

parametric spectral estimates), and the parametric Burg’s method. To save space, I will report 

Q-statistics, based on the Burg’s spectral estimates of )(ˆ wS x

8
. Spectral estimates were 

calculated by Matlab 6.0. 

The Burg’s method requires selection the order of )( pAR  process. Although it is often 

recommended to choose p on the basis of minimum information criteria (such as AIC), Monte 

Carlo evidence with actual time series often indicate that a different approach – by setting p to 

a fixed proportion of sample size n (such as n/3) – may be more sensible (Percival, Walden 

(1993), p. 437). Figure 5 plots Burg’s spectral estimates for 1Sh  (i.e., the share of food, 

beverages, and tobacco in Japan) over 1970:2-1999:1 (seasonally unadjusted) for three 

alternative orders of AR process. The spectral estimates have spectral peaks at zero frequency 

(due to the pronounced secular trend), and at two seasonal frequencies 2/   and   that 

                                                 
7
 The consumption categories included: 1)food, beverages, tobacco; 2) clothing, footwear; 3) rent, fuel, power; 

4) furniture, household operation; 5) medical care; 6) transport and communication; 7) recreation and 

entertainment; 8) other consumption.  
8
 Results for non-parametric spectral estimates turned out very similar to ones, reported in the paper. They are 

available upon request from the author. 
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correspond to cycles with period of 4 and 2 quarters, respectively. With  30p the spectral 

estimate became too volatile, so I opted for )20(AR  process as a compromise.  

Table 3a and 3b report Q-statistics for linear filters, based on the Burg’s spectral 

estimates of )(ˆ wS x

9
. In addition to filters, discussed in section 1, the table reports results for 

the HP filter with optimal choice of  10
.  

Consider the relative performance of filters in the case of 1Sh . The smallest Q-statistic 

is produced by BK
HP

(20) filter, while the HP filter with optimal parameter 854  (as shown 

in the last row of table 3a) turned out the second with 04.1Q . HP(opt) was followed by 

HP(1000)
11

 and HP(1600). Note that for all variations of BK and BKS filters the Q-statistic 

always fell short of 1.5, while for the first-difference filter it was as high as 3.02. The 

application of the linear trend and AI
HP

(m) filters was especially distorting, primarily as a 

result of their failure to eliminate the unit root component with zero frequency.  

For detrended 2Sh  time series the best filter was HP(opt), followed by two other 

Hodrick-Prescott filters. BK
HP

(20) this time was fourth, while distortions in the first-

difference filter became even more pronounced, with 67.7Q .  

Now I will summarize results for all 17 time series. The clear frontrunner turned out to 

be the HP(opt) filter, since it had the smallest Q-statistic in 13 cases. BK
HP

(20) was the best 

three times, while HP(1600) – once. If filters are compared by their median rank, HP(opt) was 

again the best, achieving the median rank of 1 among examined filters. The HP(1000) filter 

had median rank 2, while for HP(1600) the median rank was 4.  BK
HP

(20) and BKS
HP

(12) had 

median ranks 3 and 5, respectively. 

                                                 
9
 Before calculating the Q-statistics, I used seasonal adjustment by X-12 filter to remove spectral peaks at 

seasonal frequencies. 
10

 The optimal λ is one that yields the smallest Q-statistic during  the grid among feasible values of λ, as 

suggested by Pedersen (1998). 
11

 Value of λ, recommended by Pedersen (1998) on the basis of his study of AR(1) and AR(2) processes. 
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There was a noteworthy link between the benefits of the Lanczos’ σ-adjustment in  

BKS
HP

(12) and the estimated optimal value of λ parameter, used in the HP(opt) filter. When 

optimal λ turned out distant from 1600 (such as in the case of price deflators), the use of 

BKS
HP

(12) filter with the σ-adjustment yielded smaller distortions compared with BK
HP

(12) 

filter (for example, compare their in the case of 1P , table 3b). Recall that 22

gc    , so that 

a smaller   indicates a relatively larger variance of the growth component g

tx . This means 

that more power is concentrated in the frequency band 00 ww  , giving more weight to 

relatively smaller leakage of  BKS
HP

(12) compared with BK
HP

(12) in the frequency band (as 

shown in panel 1 of Figure 3).  

On the other hand, the BKS
HP

(20) filter is not nearer to zero compared with BK
HP

(20) 

at the low-frequency band (panel 2 of figure 3). This resulted in more distorting application of 

the BKS
HP

(20) filter compared with its unadjusted counterpart in cases when the optimal λ in 

the HP(opt) filter approached zero. 

Not surprisingly, the most distorting filter turned out to be the deterministic linear 

trend.  MA
HP

(m) filters induced smaller distortions than IA
HP

, but both filters still were ranked 

at the bottom. As for the first-difference filter, its medium rank among 17 detrending methods 

in tables 3a/b  was only 11. 

Using these results for Q-statistics, I selected 5 filters to   evaluate the sensitivity of 

estimated Almost Ideal Demand System to various detrending methods. The filters included 

relatively less distorting HP(opt), HP(1600) and BKS
HP

(12) filters, as well as more traditional 

deterministic linear trend and first-differencing, plus the original data without detrending. 

 

Section 3. Specification and Estimation of Almost Ideal Demand System.  

I considered major consumption categories from the National Accounts statistics of Japan. All 

data were seasonally-adjusted by X-12 filter. Original time series were quarterly, with sample 
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covering 1970:2-1999:1. The actual estimation sample was shortened to 1973:2-1996:1 due to 

the use of BKS
HP

(12) filter. Dropping 3 years of data also alleviated the problem of Hodrick-

Prescott filter at the ends of sample period. 

I estimated the following standard specification of the Almost Ideal Demand System: 





k

j

jtijttiiit PPEw
1

)log()log(                                                      (14) 

where itw  is consumption share of commodity i, tE is total expenditures, tP  and jtP  are 

deflators for total consumption and i
th

 commodity, respectively. To avoid non-linearity in the 

demand system, I used Stone’s index  





k

j

jtjtt PwP
1

)log()log(                                                                                    (16) 

The demand system allows one to test the following restrictions that imply rational consumption 

behavior: 

1. Homogeneity (no money illusion): 



k

j

ij

1

0  for each i
th

 commodity; 

2. Symmetry of the substitution matrix: jiij    . 

Due to the substantial evidence that tests of homogeneity and symmetry restrictions 

may have seriously distorted nominal size, I also applied Monte Carlo tests, using moving 

block bootstrap (MTB) with overlapping blocks. The bootstrap procedure is effective for 

taking into account the serial dependence between observations of unknown form. In this 

respect it is similar to the HAC estimator of Newey and West (1987)
12

.  MTB was 

implemented, using ‘resample’ command in Eviews 4.0. 

 

Section 4. Estimation results with alternative detrending methods. 
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I ran several specification checks to verify that major assumptions of the linear regression 

model were not violated. The lack of simultaneity bias was verified by the Hausman  test in 

its “artificial regression” version, as discussed by Davidson, MacKinnon (1993, p. 239).  I ran 

the Hausman test twice, with different sets of instruments. First, I used independent variables 

at lag 4, and second – just the ranks of independent variables. Tables 4a and 4b reports p-

values for these Hausman tests. Significance level was set at 5% significance level.  

In the first test the exogeneity assumption was rejected in each category with original 

(i.e., not detrended) and linearly detrended time series. When Hodrick-Prescott filters were 

applied, there were 3 rejections for food, rent & power, and furniture & household operation. 

With adjustment by the BKS
HP

(12) filter the null hypothesis was rejected twice. Results in 

table 4b are very similar, but with the fewer cases of significant p-values across detrending 

methods. Since the simultaneity bias does not appear to be a serious problem with data, I 

continued using the OLS estimator. 

Other specification tests were the Jarque-Bera test for normality of residuals  and 

White’s test for heteroskedasticity. The  Jarque-Bera’s test (table 5) identified the failure of 

the normality assumption in just one category of consumption (rent & fuel) in almost all data 

transformations (except linear detrending, where the null hypothesis was never rejected). 

However, at the 10 per cent significance level, there were 3 rejections of the null for the first-

difference filter. 

As for White’s test (table 6), most of its significant p-values occurred for the original 

and linearly detrended data, with other detrending methods producing just one significant p-

value (as in the previous test, it was rent & fuel).. 

                                                                                                                                                         
12

 Fitzenberger (1998) compared the moving-block bootstrap with the HAC estimator of variance, and found that  

the latter produced a better (thought still incomplete) adjustment to eliminate the downward bias in variance 

estimation. 
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Results of testing the homogeneity restriction are summarized in table 7. Its p-values 

are based on the F-distribution, with no correction for the likely serial correlation. For the 

original data the result is very similar to the original estimation of the demand system by 

Deaton and Muellbauer (1980), with as many as five rejections of the homogeneity restriction. 

When linear detrending and first-differencing is applied, the number of rejections of the null 

drops to four in both cases. Interestingly, with HP(opt), HP(1600) and BKS
HP

(12) there is just 

one rejection of the null (rent & fuel), which in fact was the consumption category with the 

most serious problems in the preceding specification testing, so that the result may be 

attributed to the severe misspecification of this equation.  

Tables 8a and 8b report results of testing the homogeneity restriction by MBB with 

block sizes 16 and 4, respectively. These p-values were calculated after resampling blocks of 

actual data as described by Fitzenberger (1998, p. 245-246).  Due to high computational cost, 

I used only 99 replications, which is, however, sufficient to calculate the exact critical values 

(or p-values) at 1 per cent significance level.  

Specifically, in each replication I calculated the usual F-statistic for the homogeneity 

restriction. After obtaining the simulated null distribution of the test statistic, its p-value was 

estimated by the quantile of the actual F-statistic for homogeneity restriction. As evident in 

tables 8a and 8b, the application of MBB results in the clear-cut confirmation of the 

theoretical restriction, with essentially all p-values becoming highly insignificant. There is a 

similar contrast in the case of testing of the symmetry restriction in table 9
13

.  

 Apparently, the most striking differences between alternative detrending methods 

turned out in the parameter estimates of the Almost Ideal Demand Function, as shown in 

tables from 10a to 10f.  

                                                 
13

 Selvanathan (1995) also reported very different results of the conventional and Monte Carlo tests in the 

demand analysis of OECD countries. Instead of MBB Salvanathan applied a parametric bootstrap with OLS 

residuals generated independently according to the estimated  covariance matrix of residuals. 
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Results of table 10a, where the original time series were used, illustrate the ubiquitous 

spurious regressions, with both R
2
  and DW statistics very close to unity. There is also a large 

number of parameter estimates that appear to be “significant”. Results in table 10b (with 

deterministic linear detrending) are very similar, since this detrending still preserves 

stochastic trend in regression residuals.  

On the other hand, detrending with the first difference filter produced exactly the 

opposite estimation results (table 10c). Most R
2
 statistics hardly exceeded 0.100, while DW 

statistic indicated the prevalence of negative autocorrelation. Only 10 price parameters have 

absolute t-ratios larger than 2.0, and there are fewer significant estimates of uncompensated 

income elasticity.  

On the other hand, parameter estimates with HP(1600), HP(opt) and BKS
HP

(12) filters 

turned out very close to each other, placing the group of filters  in the middle between the 

extremes of linear detrending and first-differencing. The removal of time trend by these high-

pass filters  usually resulted in R
2
 statistics of about 0.350, with DW statistics slightly less 

than 2.0. On the other hand, the number of significant estimates of price parameters was, 

respectively, 18, 15, 14, thus exceeding the corresponding number with first-differenced data, 

but still fewer than in extreme cases of spurious regressions, when the unit root component 

with frequency zero was left in the original time series.  

 

Section 5. Conclusion. 

In this paper I found that the consequences of using various detrending methods may 

substantially affect the results of demand analysis. In particular, the conventional duo of 

deterministic linear detrending and first - differencing  are not satisfactory for the removal of 

secular trend component, since their power transfer functions provides a poor approximation 

to the ideal high-pass filter with a cutoff at business cycle frequency ow .  Applying a distance 
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metric, I measured the distortionary effects of major detrending procedures with respect to 

“the typical spectral shape” of actual economic time series, and found that various 

modifications of the Hodrick-Prescott and Baxter-King filters induce the smallest distortions 

in the spectrum of cyclical component of time series. These high-pass filters proved to be 

versatile tools to deal with the non-stationary time series without masking a number of 

significant relationships in the estimated Japanese demand system.  
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Figure 1. 

 

Figure 2. 
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Table 1a. Power transfer function of linear filters. 
Period p (in 

years) 
Frequency w 

(in radians) 
Ideal high-
pass filter 

Linear trend 
 

First 
difference 

MA
HP

(12) 
 

MA
HP

(16) 
 

MA
HP

(20) 
 

AI
HP

(12) 
 

AI
HP

(16) 
 

AI
HP

(20) 
 

Infinity 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.016 0.032 0.014 
100 0.016 0.000 1.000 0.000 0.000 0.000 0.000 0.014 0.030 0.013 
50 0.031 0.000 1.000 0.001 0.001 0.002 0.005 0.011 0.023 0.010 
25 0.063 0.000 1.000 0.004 0.010 0.029 0.065 0.002 0.006 0.003 
20 0.079 0.000 1.000 0.006 0.023 0.066 0.144 0.000 0.001 0.000 
15 0.105 0.000 1.000 0.011 0.069 0.183 0.371 0.008 0.006 0.003 
10 0.157 0.000 1.000 0.025 0.280 0.637 1.049 0.098 0.117 0.079 
9 0.175 0.000 1.000 0.030 0.389 0.828 1.251 0.157 0.189 0.140 

8 0.196 1.000 1.000 0.038 0.549 1.062 1.422 0.251 0.300 0.247 
7 0.224 1.000 1.000 0.050 0.778 1.309 1.480 0.400 0.469 0.432 
6 0.262 1.000 1.000 0.068 1.082 1.475 1.318 0.627 0.704 0.728 
5 0.314 1.000 1.000 0.098 1.394 1.375 0.952 0.931 0.972 1.085 
4 0.393 1.000 1.000 0.152 1.443 0.940 0.770 1.182 1.117 1.167 
3 0.524 1.000 1.000 0.268 0.922 0.841 1.190 1.047 0.982 0.891 
2 0.785 1.000 1.000 0.586 1.082 0.940 1.049 1.001 1.028 0.967 
1 1.571 1.000 1.000 2.000 0.922 0.940 0.952 0.973 1.008 1.026 

½ 3.142 1.000 1.000 4.000 0.922 0.940 0.952 0.968 1.004 1.024 

Table 1b. Power transfer function of linear filters. 
Period 
(years) 

Frequency w 
(in radians) 

Ideal high-
pass filter 

BK
HP

(12) 
 

BK
HP

(16) 
 

BK
HP

(20) 
 

BKS
HP

(12) 
 

BKS
HP

(16) 
 

BKS
HP

(20) 
 

HP(1600) 
 

HP(1000) 
 

Infinity 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
100 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
50 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
25 0.063 0.000 0.005 0.005 0.001 0.003 0.004 0.004 0.001 0.000 
20 0.079 0.000 0.011 0.011 0.003 0.007 0.010 0.010 0.003 0.001 
15 0.105 0.000 0.033 0.033 0.010 0.021 0.031 0.030 0.026 0.011 
10 0.157 0.000 0.139 0.143 0.078 0.089 0.125 0.126 0.242 0.142 
9 0.175 0.000 0.197 0.203 0.130 0.127 0.175 0.178 0.356 0.230 

8 0.196 1.000 0.285 0.294 0.225 0.186 0.249 0.256 0.494 0.356 
7 0.224 1.000 0.419 0.434 0.399 0.279 0.359 0.375 0.641 0.512 
6 0.262 1.000 0.619 0.641 0.699 0.422 0.515 0.550 0.777 0.677 
5 0.314 1.000 0.888 0.913 1.091 0.633 0.717 0.781 0.881 0.820 
4 0.393 1.000 1.128 1.129 1.199 0.878 0.914 0.988 0.948 0.919 
3 0.524 1.000 1.058 1.012 0.871 0.985 1.005 1.006 0.983 0.973 
2 0.785 1.000 0.991 1.038 0.961 1.009 0.994 1.005 0.996 0.994 
1 1.571 1.000 0.983 1.019 1.032 0.984 0.995 0.999 1.000 1.000 

½ 3.142 1.000 0.978 1.015 1.030 0.983 0.995 1.000 1.000 1.000 
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    Figure 3. 

 

      Figure 4. 
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Table 2. Filter weights for BK
HP

(m) and BKS
HP

(m) filters. 

Lags/Leads BK
HP

(12) BK
HP

(16 BK
HP

(20)  BKS
HP

(12) BKS
HP

(16) BKS
HP

(20) 

0 0.9425 0.9429 0.9403  0.9287 0.9350 0.9373 
1 -0.0571 -0.0567 -0.0593  -0.0703 -0.0643 -0.0620 
2 -0.0559 -0.0555 -0.0581  -0.0672 -0.0620 -0.0601 
3 -0.0539 -0.0535 -0.0561  -0.0623 -0.0583 -0.0571 
4 -0.0513 -0.0509 -0.0534  -0.0561 -0.0535 -0.0530 
5 -0.0479 -0.0475 -0.0501  -0.0489 -0.0478 -0.0481 
6 -0.0440 -0.0436 -0.0462  -0.0413 -0.0416 -0.0426 
7 -0.0396 -0.0392 -0.0418  -0.0337 -0.0351 -0.0367 
8 -0.0348 -0.0344 -0.0370  -0.0267 -0.0286 -0.0307 
9 -0.0297 -0.0293 -0.0319  -0.0206 -0.0226 -0.0249 

10 -0.0244 -0.0240 -0.0266  -0.0157 -0.0171 -0.0194 
11 -0.0190 -0.0187 -0.0212  -0.0120 -0.0125 -0.0144 
12 -0.0137 -0.0134 -0.0159  -0.0096 -0.0087 -0.0100 
13  -0.0082 -0.0108   -0.0059 -0.0064 
14  -0.0033 -0.0059   -0.0040 -0.0036 
15  0.0013 -0.0013   -0.0029 -0.0015 
16  0.0054 0.0028   -0.0025 -0.0002 
17   0.0065    0.0005 
18   0.0096    0.0007 
19   0.0121    0.0006 
20   0.0141    0.0001 

 
 
Figure 5. 
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Table 3a. Q-statistic for linear filters 
 SH1 SH2 SH3 SH4 SH5 SH6 SH7 SH8 

Linear trend 10942 10360 16796 3538 12581 6316 15299 8225 
First difference 3.02 7.67 3.66 5.46 7.76 3.77 8.86 8.71 
HP(1600) 1.17 1.32 1.14 1.03 1.34 1.17 1.04 1.00 
HP(1000) 1.06 1.08 1.03 1.00 1.09 1.05 1.00 1.01 
HP(opt) 1.04 1.00 1.02 1.00 1.00 1.02 1.00 1.07 
MA

HP
(12) 1.91 2.77 2.02 1.93 2.54 1.71 2.18 1.76 

MA
HP

(16) 3.92 5.47 4.03 3.01 4.85 3.31 3.80 2.59 
MA

HP
(20) 6.83 9.75 7.07 4.58 8.36 5.53 6.22 3.59 

AI
HP

(12) 171.70 162.46 263.39 56.37 198.15 99.91 239.71 130.46 
AI

HP
(16) 346.19 327.30 531.59 112.65 399.26 200.83 483.60 262.19 

AI
HP

(20) 148.01 140.07 226.99 48.57 170.63 86.05 206.67 112.27 
BK

HP
(12) 1.36 1.61 1.36 1.26 1.53 1.28 1.36 1.26 

BK
HP

(16) 1.34 1.56 1.34 1.21 1.49 1.25 1.31 1.19 
BK

HP
(20) 1.00 1.18 1.00 1.09 1.13 1.00 1.10 1.12 

BKS
HP

(12) 1.42 1.40 1.40 1.38 1.38 1.31 1.50 1.42 
BKS

HP
(16) 1.45 1.48 1.43 1.28 1.44 1.32 1.42 1.28 

BKS
HP

(20) 1.36 1.40 1.34 1.17 1.36 1.26 1.30 1.18 

Optimal lambda 
for HP filter 854 647 868 1172 601 767 1100 767 

 
Table 3b. Q-statistic for linear filters 
 P1 P2 P3 P4 P5 P6 P7 P8 Inc 

Linear trend 576 709 5384 240 1317 1592 921 777 277548 
First difference 2.75 2.99 6.69 2.79 5.39 4.90 3.28 2.68 6.61 
HP(1600) 1.51 1.78 2.03 1.56 1.36 2.15 1.59 1.63 1.08 
HP(1000) 1.16 1.29 1.41 1.18 1.09 1.47 1.20 1.23 1.00 
HP(opt) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MA

HP
(12) 3.27 4.06 8.24 3.15 3.60 6.74 3.80 3.55 2.40 

MA
HP

(16) 7.63 9.84 22.19 7.12 8.18 17.12 9.15 8.68 4.44 
MA

HP
(20) 14.81 19.32 47.65 13.42 16.09 35.37 18.14 17.19 7.94 

AI
HP

(12) 7.48 9.16 64.93 3.36 16.70 17.79 11.62 9.47 43664 
AI

HP
(16) 14.46 17.83 134.70 5.79 33.59 36.26 23.09 18.76 88247 

AI
HP

(20) 6.76 8.23 59.27 3.00 15.17 16.42 10.52 8.69 37576 
BK

HP
(12) 1.91 2.29 4.24 1.85 2.02 3.49 2.15 2.10 1.43 

BK
HP

(16) 1.91 2.28 4.27 1.83 2.00 3.52 2.16 2.10 1.40 
BK

HP
(20) 1.09 1.21 1.55 1.10 1.17 1.49 1.15 1.14 1.06 

BKS
HP

(12) 1.62 1.80 3.04 1.54 1.69 2.55 1.76 1.72 1.47 
BKS

HP
(16) 1.89 2.19 4.09 1.78 1.94 3.32 2.11 2.07 1.47 

BKS
HP

(20) 1.80 2.11 3.91 1.70 1.83 3.19 2.01 1.99 1.34 

Optimal lambda 
for HP filter 529 446 381 519 624 363 500 443 1004 

 
Table 4a.  P-values for the Hausman test with 4 lags of independent variables 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.000 0.001 0.000 0.000 0.000 0.000 
Clothing, footwear 0.000 0.000 0.432 0.196 0.407 0.357 
Rent, fuel, power 0.000 0.000 0.700 0.011 0.014 0.361 
Furniture, household operation 0.026 0.001 0.436 0.038 0.034 0.045 
Medical care 0.000 0.000 0.987 0.193 0.268 0.224 
Transport and communication 0.000 0.000 0.630 0.117 0.253 0.270 
Recreation, entertainment 0.030 0.005 0.195 0.142 0.103 0.285 

 
Table 4b.  P-values for the Hausman test with ranks of independent variables 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.218 0.282 0.099 0.117 0.053 0.409 
Clothing, footwear 0.002 0.768 0.729 0.801 0.949 0.357 
Rent, fuel, power 0.000 0.525 0.180 0.024 0.008 0.059 
Furniture, household operation 0.878 0.371 0.669 0.327 0.344 0.159 
Medical care 0.000 0.004 0.430 0.038 0.190 0.027 
Transport and communication 0.000 0.007 0.863 0.308 0.020 0.305 
Recreation, entertainment 0.007 0.042 0.858 0.586 0.773 0.489 
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Table 5. P-values for the Jarque-Bera’s normality test  

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.421 0.235 0.068 0.275 0.203 0.261 
Clothing, footwear 0.958 0.829 0.473 0.904 0.807 0.926 
Rent, fuel, power 0.001 0.273 0.000 0.013 0.004 0.033 
Furniture, household operation 0.535 0.648 0.800 0.980 0.993 0.977 
Medical care 0.594 0.337 0.070 0.513 0.611 0.775 
Transport and communication 0.440 0.329 0.466 0.438 0.361 0.257 
Recreation, entertainment 0.460 0.644 0.958 0.488 0.530 0.421 

 
Table 6. P-values for the White’s test for heteroskedasticity 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.577 0.623 0.581 0.378 0.196 0.482 
Clothing, footwear 0.017 0.504 0.863 0.275 0.087 0.186 
Rent, fuel, power 0.000 0.007 0.000 0.002 0.000 0.018 
Furniture, household operation 0.685 0.567 0.133 0.865 0.627 0.434 
Medical care 0.016 0.588 0.296 0.671 0.810 0.801 
Transport and communication 0.097 0.000 0.337 0.277 0.439 0.510 
Recreation, entertainment 0.148 0.907 0.943 0.847 0.937 0.815 

 
Table 7. P-values for the test of the homogeneity restriction 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.455 0.520 0.383 0.307 0.245 0.584 
Clothing, footwear 0.001 0.117 0.025 0.807 0.312 0.822 
Rent, fuel, power 0.000 0.000 0.000 0.000 0.008 0.000 
Furniture, household operation 0.105 0.325 0.017 0.146 0.261 0.225 
Medical care 0.005 0.010 0.041 0.209 0.338 0.635 
Transport and communication 0.038 0.042 0.477 0.559 0.833 0.987 
Recreation, entertainment 0.000 0.000 0.477 0.349 0.434 0.836 

Total demand system 0.000 0.000 0.000 0.006 0.090 0.008 

 
Table 8a. P-values for the test of the homogeneity restriction by MBB  
(with block length 16) 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.670 0.620 0.840 0.740 0.650 0.640 
Clothing, footwear 0.540 0.590 0.610 0.880 0.600 0.920 
Rent, fuel, power 0.680 0.720 0.280 0.620 0.510 0.690 
Furniture, household operation 0.730 0.680 0.670 0.310 0.340 0.360 
Medical care 0.340 0.760 0.290 0.650 0.610 0.820 
Transport and communication 0.400 0.480 0.480 0.640 0.990 0.770 
Recreation, entertainment 0.180 0.570 0.840 0.410 0.480 0.600 

Total demand system 0.730 0.920 0.490 0.820 0.860 0.840 

 
Table 8b. P-values for the test of the homogeneity restriction by MBB  
(with block length 4) 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Food, beverages, tobacco 0.580 0.700 0.720 0.690 0.620 0.660 
Clothing, footwear 0.320 0.430 0.600 0.890 0.520 0.920 
Rent, fuel, power 0.430 0.450 0.370 0.490 0.360 0.490 
Furniture, household operation 0.630 0.660 0.600 0.470 0.500 0.420 
Medical care 0.430 0.530 0.520 0.510 0.540 0.620 
Transport and communication 0.310 0.480 0.580 0.560 0.990 0.670 
Recreation, entertainment 0.200 0.520 0.900 0.380 0.460 0.660 

Total demand system 0.500 0.750 0.490 0.730 0.800 0.690 

 
Table 9. P-values for the test of the symmetry restriction 

 
Original 

data 
Linear 

detrend. 
First 

difference 
HP(1600) 

 
HP(opt) 

 
BKS

HP
(12) 

 

Asymmetric test statistic 0.000 0.000 0.047 0.000 0.000 0.000 
MBB with block length 16 0.610 0.590 0.630 0.630 0.500 0.600 
MBB with block length  4 0.580 0.640 0.830 0.810 0.720 0.820 
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Table 10a. parameter estimates with the original time series 
 Const P1 P2 P3 P4 P5 P6 P7 P8 Inc R-sq DW 

Food 1.94 0.10 0.04 -0.11 -0.08 -0.04 0.04 0.03 0.00 -0.16 0.997 1.982 
 (16.66) (5.10) (2.85) (-7.27) (-8.27) (-5.81) (3.38) (2.19) (0.11) (-15.00)    
Clothing -0.25 0.01 0.01 -0.07 0.02 -0.01 0.05 0.06 -0.10 0.03 0.925 1.091 
 (-1.77) (0.30) (0.43) (-3.68) (1.61) (-1.26) (3.32) (3.32) (-4.87) (2.24)    
Rent, fuel 1.26 -0.02 0.05 0.25 -0.08 -0.01 -0.11 -0.15 0.15 -0.10 0.976 0.733 
 (6.85) (-0.56) (2.06) (10.44) (-5.75) (-0.60) (-5.97) (-6.39) (5.86) (-5.77)    
Furniture, household -0.06 0.08 -0.02 0.07 0.03 -0.02 0.00 -0.03 -0.13 0.01 0.910 1.370 
 (-0.53) (4.30) (-1.15) (4.55) (3.67) (-2.43) (-0.22) (-2.25) (-8.30) (1.03)    
Medical care 0.43 0.01 -0.07 0.05 0.00 0.03 -0.02 -0.04 0.07 -0.03 0.887 0.711 
 (2.81) (0.25) (-3.59) (2.60) (-0.32) (3.20) (-0.98) (-1.89) (3.33) (-2.15)    
Transport -0.77 -0.10 0.05 -0.15 0.00 0.00 0.07 0.01 0.10 0.08 0.881 0.844 
 (-4.17) (-3.14) (2.06) (-6.05) (-0.07) (-0.41) (3.45) (0.57) (3.71) (4.78)    
Recreation -1.39 0.05 0.00 -0.07 0.01 -0.01 -0.03 0.05 -0.05 0.14 0.977 1.342 
 (-8.93) (1.81) (0.04) (-3.27) (0.48) (-1.54) (-1.59) (2.38) (-2.15) (9.72)     

 
Table 10b. Parameter estimates with data, detrended by the deterministic linear trend 
 Const P1 P2 P3 P4 P5 P6 P7 P8 Inc R-sq DW 

Food 0.00 0.12 0.03 -0.10 -0.08 -0.04 0.03 0.03 0.00 -0.14 0.891 1.934 
 (2.53) (5.67) (2.14) (-6.14) (-8.49) (-5.61) (2.05) (2.41) (0.01) (-9.26)    
Clothing 0.00 0.04 0.01 -0.03 0.01 -0.01 0.01 0.00 -0.04 0.10 0.604 1.040 
 (-0.46) (1.77) (0.33) (-1.75) (1.35) (-1.17) (0.55) (0.19) (-2.74) (6.07)    
Rent, fuel 0.00 -0.07 0.06 0.20 -0.08 -0.01 -0.05 -0.07 0.08 -0.20 0.845 0.443 
 (3.20) (-2.48) (3.03) (9.30) (-6.47) (-1.11) (-3.00) (-3.92) (3.97) (-10.23)    
Furniture, household 0.00 0.07 0.00 0.06 0.03 -0.02 0.00 -0.05 -0.11 0.00 0.779 1.250 
 (2.63) (3.26) (0.09) (3.67) (3.56) (-2.58) (0.33) (-3.61) (-7.20) (0.07)    
Medical care 0.00 -0.04 -0.04 0.01 0.00 0.02 0.03 -0.03 0.07 -0.10 0.856 1.042 
 (2.13) (-1.70) (-2.13) (0.74) (0.12) (2.94) (1.71) (-1.76) (3.73) (-5.48)    
Transport 0.00 -0.04 0.00 -0.11 -0.01 0.00 0.02 0.02 0.08 0.15 0.535 1.084 
 (-2.68) (-1.24) (-0.07) (-4.12) (-0.47) (0.23) (0.83) (1.10) (3.47) (6.56)    
Recreation 0.00 0.04 -0.01 -0.09 0.01 -0.01 0.00 0.09 -0.09 0.10 0.870 1.247 
 (-2.16) (1.31) (-0.36) (-3.93) (0.67) (-1.55) (-0.26) (4.94) (-4.32) (4.94)     

 
Table 10c. Parameter estimates with data, detrended by the first difference filter 
 P1 P2 P3 P4 P5 P6 P7 P8 Inc R-sq DW 

Food 0.10 -0.02 -0.04 0.01 -0.03 0.01 0.00 -0.05 -0.09 0.268 2.553 
 (3.15) (-0.60) (-1.09) (0.29) (-2.61) (0.53) (0.11) (-1.20) (-3.14)    
Clothing 0.01 0.02 -0.04 -0.03 0.00 -0.01 -0.01 0.02 0.04 0.057 2.541 
 (0.47) (0.85) (-1.16) (-1.49) (-0.36) (-0.43) (-0.72) (0.59) (1.55)    
Rent, fuel 0.01 0.01 0.22 -0.05 0.00 -0.04 -0.03 -0.01 -0.12 0.540 1.758 
 (0.75) (0.49) (9.15) (-3.29) (-0.55) (-2.98) (-2.88) (-0.43) (-7.70)    
Furniture, household 0.02 -0.05 0.00 0.07 -0.01 0.00 -0.04 -0.04 0.07 0.181 2.362 
 (0.92) (-2.28) (0.14) (3.36) (-0.98) (-0.02) (-2.16) (-1.26) (3.12)    
Medical care 0.01 -0.01 0.01 -0.03 0.03 0.00 -0.01 0.03 -0.03 0.119 2.562 
 (0.33) (-0.33) (0.44) (-1.34) (3.11) (-0.13) (-0.80) (0.97) (-1.26)    
Transport 0.00 0.00 -0.03 0.00 0.00 0.02 0.00 0.03 0.00 -0.047 2.464 
 (-0.11) (-0.11) (-0.68) (-0.02) (-0.36) (0.94) (0.14) (0.81) (-0.18)    
Recreation -0.01 0.00 -0.04 0.00 0.02 -0.01 0.04 -0.02 0.05 0.053 2.715 
 (-0.25) (0.04) (-0.90) (-0.16) (1.19) (-0.36) (1.96) (-0.45) (1.60)     

 
Table 10d. Parameter estimates with data, detrended by the HP(1600) filter 
 Const P1 P2 P3 P4 P5 P6 P7 P8 Inc R-sq DW 

Food 0.00 0.11 0.02 -0.05 -0.06 -0.03 0.03 0.03 0.00 -0.12 0.763 1.876 
 (0.48) (4.75) (0.86) (-1.75) (-3.91) (-3.56) (2.11) (1.46) (-0.11) (-4.96)    
Clothing 0.00 0.01 0.04 0.01 -0.02 -0.01 -0.01 -0.01 0.00 0.05 0.336 1.582 
 (0.18) (0.50) (2.54) (0.34) (-1.67) (-1.19) (-0.61) (-0.98) (0.03) (2.40)    
Rent, fuel 0.00 -0.02 -0.01 0.21 0.00 -0.02 -0.02 -0.02 -0.05 -0.12 0.797 1.249 
 (0.47) (-1.18) (-1.06) (11.21) (0.05) (-2.90) (-2.68) (-2.44) (-2.83) (-8.52)    
Furniture, household 0.00 0.06 0.01 0.03 0.02 -0.02 -0.01 -0.04 -0.10 0.02 0.545 1.586 
 (0.48) (2.80) (0.88) (0.88) (1.92) (-2.20) (-0.49) (-2.33) (-3.89) (1.09)    
Medical care 0.00 -0.02 -0.05 -0.06 0.02 0.02 0.02 0.03 0.00 -0.02 0.387 1.668 
 (0.36) (-0.79) (-2.99) (-2.28) (1.64) (2.31) (1.82) (1.96) (-0.03) (-0.98)    
Transport 0.00 -0.04 -0.02 -0.04 0.00 0.01 0.03 -0.02 0.09 0.08 0.137 1.227 
 (-0.43) (-1.35) (-0.72) (-1.04) (0.19) (0.56) (1.95) (-0.80) (2.54) (2.85)    
Recreation 0.00 0.00 0.01 0.02 -0.01 0.00 -0.01 0.03 -0.01 0.04 -0.007 1.749 
 (-0.39) (0.12) (0.36) (0.53) (-0.59) (-0.09) (-0.38) (1.49) (-0.27) (1.36)     
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Table 10e. Parameter estimates with data, detrended by the HP(opt) filter 
 Const P1 P2 P3 P4 P5 P6 P7 P8 Inc R-sq DW 

Food 0.00 0.12 0.01 -0.05 -0.06 -0.03 0.03 0.03 0.00 -0.12 0.673 1.798 
 (0.57) (4.82) (0.45) (-1.29) (-3.47) (-2.43) (1.75) (1.35) (0.05) (-4.29)    
Clothing 0.00 0.02 0.04 0.04 -0.02 -0.01 -0.01 -0.01 -0.02 0.05 0.310 1.766 
 (0.21) (0.90) (2.39) (1.31) (-1.46) (-0.89) (-0.86) (-0.81) (-0.63) (2.40)    
Rent, fuel 0.00 -0.02 -0.01 0.20 -0.01 -0.01 -0.02 -0.03 -0.05 -0.14 0.767 1.194 
 (0.17) (-1.28) (-0.68) (9.68) (-1.20) (-2.38) (-2.50) (-2.53) (-2.55) (-9.27)    
Furniture, household 0.00 0.06 0.02 0.04 0.03 -0.02 -0.01 -0.05 -0.10 0.05 0.547 1.665 
 (0.33) (2.69) (0.83) (1.10) (2.09) (-1.67) (-0.74) (-3.06) (-3.54) (1.89)    
Medical care 0.00 -0.02 -0.05 -0.06 0.02 0.02 0.02 0.02 0.01 -0.01 0.336 1.878 
 (0.40) (-0.96) (-2.80) (-1.84) (1.69) (2.64) (1.54) (1.49) (0.22) (-0.32)    
Transport 0.00 -0.04 -0.02 -0.06 0.01 0.00 0.03 0.00 0.06 0.05 0.061 1.272 
 (-0.32) (-1.49) (-0.80) (-1.39) (0.61) (-0.25) (2.16) (0.07) (1.70) (1.57)    
Recreation 0.00 0.01 0.01 0.02 -0.01 0.00 -0.01 0.03 -0.02 0.03 -0.013 1.795 
 (-0.33) (0.29) (0.41) (0.42) (-0.66) (-0.12) (-0.39) (1.63) (-0.43) (0.92)     

 
Table 10f. Parameter estimates with data, detrended by the BKS

HP
(12) filter. 

 Const P1 P2 P3 P4 P5 P6 P7 P8 Inc R-sq DW 

Food 0.00 0.11 0.00 -0.06 -0.05 -0.03 0.03 0.02 0.00 -0.11 0.637 1.872 
 (0.35) (4.47) (0.14) (-1.80) (-2.95) (-2.86) (1.84) (1.00) (-0.08) (-4.36)    
Clothing 0.00 0.02 0.04 0.01 -0.03 -0.01 -0.01 -0.01 -0.01 0.05 0.324 1.713 
 (0.58) (1.09) (2.65) (0.51) (-1.96) (-0.85) (-0.84) (-1.04) (-0.55) (2.20)    
Rent, fuel 0.00 -0.02 0.00 0.20 -0.01 -0.01 -0.02 -0.03 -0.03 -0.13 0.776 1.273 
 (-0.66) (-1.23) (0.10) (10.69) (-1.37) (-2.33) (-2.62) (-2.64) (-1.94) (-8.54)    
Furniture, household 0.00 0.06 0.01 0.03 0.03 -0.01 -0.01 -0.05 -0.09 0.04 0.503 1.678 
 (0.80) (2.60) (0.69) (1.20) (1.77) (-1.64) (-0.56) (-2.99) (-3.55) (1.65)    
Medical care 0.00 -0.02 -0.05 -0.04 0.02 0.02 0.02 0.02 0.01 -0.01 0.323 1.727 
 (0.35) (-1.10) (-2.76) (-1.46) (1.59) (2.81) (1.51) (1.23) (0.48) (-0.41)    
Transport 0.00 -0.04 -0.01 -0.05 0.01 0.00 0.03 0.00 0.06 0.05 0.071 1.399 
 (-0.43) (-1.65) (-0.46) (-1.54) (0.53) (0.31) (1.94) (0.13) (1.95) (1.67)    
Recreation 0.00 0.02 0.00 0.00 -0.01 0.00 -0.01 0.04 -0.03 0.03 0.000 1.777 
 (-0.75) (0.71) (0.08) (-0.13) (-0.42) (-0.31) (-0.39) (2.01) (-0.97) (0.95)     
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