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ABSTRACT 

This paper develops two goodness-of-fit tests to verify the joint null hypothesis that regression 
disturbances have zero mean and constant variance, and are generated from the Gaussian normal 
distribution. Initially, these tests use a high-breakdown regression estimator to identify a subset 
of  regular observations, and then calculate standardized prediction residuals and studentized 
prediction residuals, from which the final test statistics are derived. A Monte Carlo study 
demonstrates that the first test is particularly sensitive to a small number of  regression outliers 
with non-zero mean or unusually large variance, and in general to regression misspecifications 
that produce regression disturbances with longer tails than could be justified by the normality 
assumption. In contrast, the second test detects a substantial number of  regression outliers, 
specifications with incorrect functional forms, omissions of  relevant variables, and short tails in 
the distribution of  the error term. While most specification tests are designed for a particular 
alternative, the joint application of  the proposed tests has a high power to detect a wide range of  
breakdowns of  the linear regression model. The omnibus property of  the suggested tests makes 
redundant the current practice of  running the battery of  various specification tests. 
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1. INTRODUCTION 

Although the classical regression model εβ += XY  postulates that the error term ε  has zero 

mean, constant variance  and normal distribution for all its elements, conventional 

econometric measures of  goodness of  fit do not directly examine these distributional 

assumptions. For example, the traditional measure of  goodness of  fit – the R  statistic – 

compares the variation of  estimated OLS residuals with the variation of  dependent variable Y. 

However, this ratio does not verify any distributional properties of  

2σ

2

ε . As a result, researchers 

that examine the goodness-of-fit of  their models by R  may fail to notice substantial deviations 

from the assumed distribution of  

2

ε . 

Distributional assumptions about ε can be also verified by univariate tests for normality,  

such as the Jarque-Bera, Shapiro-Wilk, or Shapiro-Francia tests. Since the vector of  regression 

disturbances ε  is not observable, the univariate tests for normality are usually applied to 

available estimates of  ε , most often to OLS residuals εε )(ˆ VI −= , where V  is the projection 

matrix . The distribution of  XXX ′−1( X′ ) ε̂  does converge to ε  asymptotically (Theil, 1971, p. 

378-379), but in finite samples their correspondence may be poor1.  In particular, if  some rows 

of  X are unusually large, then the corresponding diagonal elements of  matrix V (denoted 

hereafter by v ) can also become large, producing so-called ‘high-leverage points’. Since the 

variance of  i

ii

th element of  OLS residual vector ε̂  is , high leverage points may 

substantially reduce the variance of  OLS residuals

)1(2
iiv−σ

i

2. In general, the projection matrix V can 

modify OLS residuals so much that the distribution of  ε̂  may have little in common with the 

distribution of  ε . This may greatly diminish the power of  univariate tests of  normality. For 

                                                 

1 This is because the distribution of ε ′  depends on the configuration of the matrix V. 
2 The drop in variance is especially conspicuous when a dummy variable for ith observation is used. In this case 

, so that the variance, as well as the value of 1=iiv iε̂ , would become zero even though the corresponding 

regression disturbance iε  may have unusually large variance, or non-zero mean 
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example, if  deviations from the assumed normality of  ε  are located at high-leverage points, 

univariate tests for normality may fail to spot these deviations in estimated iε̂ 3.  

Another drawback of  univariate tests for normality is that they usually examine the null 

hypothesis of  normal distribution regardless of  any specific parametric value for mean and 

variance of  ε . In contrast, the full ideal conditions of  the linear regression model explicitly 

postulate that each element of  vector ε  has zero mean. Thus, most of  the reported normality 

tests are in fact examining a broader null hypothesis than the one postulated by the linear 

regression model.  

In this paper I introduce two goodness of  fit tests of  the linear regression model that 

avoid these pitfalls of  mechanical application of  univariate goodness-of-fit tests to OLS residuals. 

A Monte Carlo study demonstrates a high degree of  complimentarity in the power of  these tests. 

In particular, the first test is sensitive to a small number of  regression outliers, defined as 

observations with non-zero mean or unusually large variance of  ε . More generally, the first test 

is sensitive to regression misspecification that results in ε  with longer tails than could be justified 

by the normality assumption. In contrast, the second test has a good power to detect a large 

number of  regression outliers, specifications with incorrect functional forms, omissions of  

relevant variables, and short tails in the distribution of  ε .  

While the vast majority of  specification tests in econometrics are designed for a 

particular alternative4, the joint application of  the proposed tests has a high power to detect most 

major breakdowns of  the classical linear regression model5 . The omnibus property of  the 

                                                 

3 This was demonstrated by  Weisberg (1980), who compared the power of  the univariate Shapiro-Wilk test with 
respect to unobservable ε  and to corresponding regression residuals , resulting from different configurations of 
matrix V. When, for example, 

ε̂
ε  had log-normal distribution, the Shapiro-Wilk easily detected the non-normality of 

ε  (the power was 99 per cent), but depending on V, the test power with OLS residuals varied from 41 to 91 per 
cent. 
4 Even including  a few ‘general’ tests that are ostensibly designed to guard against unspecified violations of full ideal 
conditions, as demonstrated by Thursby (1989). 
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5 With the exception of the independence of ε  and the full rank of X. 



suggested tests makes redundant the current practice of  running the battery of  various 

specification tests.   

The paper is organized as follows. Section 2 describes test statistics. Their non-standard 

distribution under the null is discussed in section 3, followed by an illustrative example in section 

4. Section 5 reports the power of  suggested and conventional tests in detecting major violations 

of  the linear regression model, and section 6 offers conclusions. 

 

2. TEST ALGORITHM 

Consider the standard regression model εβ += Xy , where y is ( 1×n ) vector of  observations 

on a dependent variable, X is ( kn × ) matrix of  n observations on k independent variables 

(including the intercept), β  is ( ) vector of  unknown regression coefficients, and 1×k ε  is 

( 1×n ) vector of  unobservable regression disturbances, assumed to be i.i.d. . The 

matrix X is assumed to be fixed and of  full rank. 

),0( 2
nIN σ

To validate the distributional properties of  ε , the test algorithm uses the sequence of  

recursive residuals w  (i nki ,...,1+= ) 

iiiiiiii xXXxxyw 1
1

'
1

'
1 )(1)ˆ( −

−−− +−= β                                                              (1) 

where  is the OLS estimate of  11
1

111 ')'(ˆ
−−

−
−−− = iiiii YXXXβ β , calculated from preceding i  

observations. As shown by Brown et al. (1975), if  the null hypothesis , 

then . In other words, if  regression disturbances 

1−

)2σ,0(ε N∼

),0( 2σN∼w ε  have zero mean and constant 

variance  and are normally distributed, then estimated recursive residuals w  have the same 

property.  

2σ

The values of  recursive residuals depend on data ordering, so that even a minor data 

permutation can produce a completely different set of  recursive residuals. In particular, the exact 

normality of  recursive residuals holds only if  they are calculated on randomly-ordered 
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observations, or by any variable that is statistically independent of  w  (such as any independent 

variable in X, or predicted values ).  If, in contrast, the data ordering is determined by 

analyzed data (i.e., determined endogenously), the normality of  w is only approximate.  

i

β̂X

 

A. ENDOGENOUS DATA ORDERING 

Starting from Brown et al. (1975), most application of  recursive residuals assumed that the 

ordering of  observations is either fixed or known a priori (with frequent references to a ‘natural’ 

order, such as time or by some independent variable). In contrast, the objective of  this paper is 

to select an endogenous order of  observations in a way that maximizes the power of  recursive 

residuals to detect departures from the null hypothesis. The endogenous ordering makes the 

distribution of  w nonstandard, but this problem can be solved by Barnard’s (1963) suggestion to 

approximate the distribution of  any non-standard statistic with simulated random data, generated 

under the null hypothesis.  

The task of  ordering observations endogenously is to ensure that the estimation subset 

of  preceding observations contains only regular observations, while discordant observations 

penetrate into the estimation subset as late as possible. In statistical literature, this approach was 

applied for testing regression outliers by Hadi and Simonoff  (1993). They suggested to assemble 

the most regular observations in the initial subset of  k observations (which is the minimum size 

to calculate the first non-zero recursive residual w ), and then enlarge the estimation subsets 

recursively by the least deviant observation outside the estimation subset.  

1+k

If  the initial subset of  k observations contains the most regular observations, the Hadi-

Simonoff  algorithm will move discordant observations to the very end of  the ordered sample. 

Essentially, their algorithm precludes the harmful impact of  regression outliers on the estimated 

regression parameters as long as regression outliers are kept outside the estimation subset.  
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The composition of  the initial subset of  k observation is the Achilles’ heel of  the Hadi-

Simonoff  algorithm. They suggested to use observations with the smallest absolute ‘adjusted 

residuals’, defined by 
21

)1(ˆ iii v−ε . Basically, this is OLS residual iε̂ , divided by its standard 

error. The normalization solves the problem of  heteroskedasticity of   iε̂ . However, adjusted 

residuals are still immune to so-called ‘masking effect’,  when regression outliers with large ε  are 

‘masked’  by small OLS residuals ε̂ 6 and remain unidentified.  

Some estimators are not susceptible to the masking effect, including, among others, the 

least trimmed squares (LTS) estimator, introduced by Rousseeuw (1984). Like the OLS, the LTS 

minimizes the sum of  squared residuals, but disregards the impact of  the most discordant part 

of  data. Define [q] the integer part of  q, and let ( )[ ]21++= knh . While the OLS criteria 

minimizes the sum of  squared residuals for all observations, the LTS criteria minimizes the sum 

of  only h  smallest squared residuals, and ignores (n-h) observations with larger residuals.  

Rousseeuw and  Hubert (1997, p. 5) demonstrated that parameter estimates by the LTS 

remain bounded if  there are as many s  or fewer regression outliers. Thus, 

the LTS estimator becomes unbounded only with 

]2/)[( knhn −=−=

)1( +s  regression outliers. In contrast, the 

OLS breaks down with even a single outlying observation.  

One drawback of  the LTS estimator is that, unlike OLS, its objective function does not 

have a closed form solution. As a result, LTS estimates are calculated by various algorithms, most 

often by the original PROGRESS code from Rousseeuw (1984), which is based on so-called  

elemental set algorithm. In essence, this algorithm picks up a subset of  k observations (called 

‘elemental set’), and computes exact parameter estimates for k independent variables. Then it 

calculates residuals for the remaining n-k observations. These residuals are squared and sorted, 
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6 In essence, the masking effect  is due to the fitting criteria of the OLS estimator. The OLS minimizes the sum of 
squared deviations of all observations, even if some observations are regression outliers. When the proportion of 
outliers is large, the OLS fit tries to accommodate the outlying observations as well, producing OLS residuals that 
do not clearly distinguish the presence of outlying observations.  



and the sum of  h smallest residuals is calculated as the LTS fitting criteria. If  the fitting criteria is 

smaller than the one from previous ‘elemental set’ trials, the criteria is stored (together with 

parameter estimates). The procedure is repeated with different subsets of  size k, and the final 

parameter estimates are ones that eventually produced the smallest LTS fitting criteria.  

Clearly, the algorithm is certain to find the global LTS minimum only if  it evaluates all 

 combinations of  the data. This is feasible for small models, but the computational cost 

rapidly becomes prohibitive even for moderate n and k. As shown in table 1, for 







k
n

50=n  and 

, the algorithm requires evaluation of  as many as 99,884,400 elemental subsets. With 7=k

=100n  and k  the number of  elemental sets soars to 16,007,560,800!  7=

Recently, Rousseeuw and Van Driessen (1999) developed a much faster LTS algorithm 

which finds a close approximation to the LTS global minimum with much less computational 

cost. The modified LTS algorithm is based on the idea that instead of  evaluating all 

  

elemental subsets of  data, it is sufficient to minimize the probability that elemental sets contain 

at least a single discordant observation. Let m and 





k
n

ϖ  be the number of  elemental sets and the 

maximum share of  outlying observations, respectively. Since elemental sets are picked up at 

random, the probability ρ  that at least one elemental subset contains at least one discordant 

observation is .  Setting mk ))(1( ϖρ −= 1− ρ  to a sufficiently small number (say, 0.01), and 

fixing ϖ  at its maximum7 asymptotic level 0.50, the lower limit of  ‘elemental set’ regressions to 

keep ρ  below 0.01 can be quite feasible, such as just 590 for 50=n  and  (see column 4 of  

table 1)

7=k

8.  

                                                 

7 The share of discordant observations could not  exceed 0.5, since otherwise the distinction between regular and 
discordant observations is not meaningful.  
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8 Note that ρ  does not involve the sample size n, so that the same number of 590 ‘elemental set’ regressions is 
sufficient to for models with 100=n  and k  and so on. 7=



In fact, the default number of  evaluated elemental sets m  in the PROGRESS code 

often ensures that 

d

ρ  is very low. Consider a case where 50=n  and , for which the default 

m

7=k

1110−

d  is set to 3,000. The probability that at least one discordant observations affects the LTS 

parameter estimates is, in fact, as low as  ( . Similar probabilities for 

other default cases are given in column 7 of  table 1.  

3000 6) ≅7)5.01(1 ×−−

This feature of  the PROGRESS code is used in the following LTS-OLS algorithm. 

Initially, the algorithm ranks the data endogenously from the most regular to more discordant 

observations. It produces the first basic subset B  of  regular observations. However, in contrast 

to the Hadi-Simonoff  algorithm, the subset contains h (rather than k) observations. 

1

 

TEST ALGORITHM (PART 1) 

Step 1. Apply the LTS estimator to all n observations, and evaluate LTS minimizing criteria 

 with at least the default number of  elemental sets  m  in the 

PROGRESS code. 

∑ =
−h

i iLTSii xy
1

2
)()ˆ( β d

Step 2. Using LTS parameter estimates after   elemental set trials, calculate LTS residuals. dm

Step 3. Sort all n observations by absolute values of  their LTS residuals, and include in the 

initial basic subset  h observations with the smallest absolute LTS residuals. 1B

Step 4. Apply OLS estimator to observations in subset B , and calculate OLS absolute 

residuals for these h observations.  
1

Step 5. Sort observations in subset  by absolute values of  their OLS residuals. 1B

 

It will be shown shortly that the addition of  OLS in Steps 4 and 5 improves the precision of  

parameter estimates after the LTS fit in Step 1. This efficiency gain can also be explained 

intuitively. Parameter estimates by the elemental sets algorithm are exactly determined by k 

observations. In contrast, the subsequent OLS estimate in Step 4 takes into account the 

information from h observations in (with h ).  1B k≥
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To verify the robustness, efficiency, and computational cost of  the combined LTS-OLS 

algorithm, I ran a small Monte Carlo experiment with k set to 9 (so that the identification of  

regular observations becomes fairly complicated), while sample size n set to 20, 60, and 100. 

These values of  k and n required the evaluation of  1.68×105, 1.48×1010 and 1.90×1012 elemental 

sets. The regular data-generating process was εβ∑ =
+= k

j jj X1
Y , with , 11 =X 1=jβ  for all  j  

and )1,0(~ Nε .  

In total, 5 patterns of  data were considered. In the first experiment all regression 

disturbances are generated as ε  ~ )1,0(N  with no regression outliers (replicating the ideal 

specification of  the linear regression model). In other experiments,  regular data were replaced by 

discordant observations, generated as )10,100(N .  

As mentioned before, parameter estimates of  LTS fit remain bounded if  the number of  

regression outliers is hns −=  or fewer. Utilizing this property, the robustness of  LTS with 

respect to the robustness bound s  was verified. Specifically, the efficiency of  OLS and LTS 

estimators with just a single outlier (second experiment), s  outliers (third experiment), 2/ s  

outliers (fourth experiment), and 1+s  outliers (fifth experiment) was considered.  

As discussed before, leverage points can have sizeable impact on the distribution of  OLS 

residuals. Thus, whether the leverage points may affect the LTS estimator is also investigated. 

First, outliers at low leverage points, when each row of  matrix X was generated from uniform 

distribution )15,0(U  were generated. Secondly, outliers at high leverage points, with 

corresponding rows of  matrix X distributed as )10,15(N  and other rows of  X generated as low 

leverage points were planted. 

To obtain random numbers, a combined multiple recursive generator MRG32k5a, 

suggested by L’Ecuyer (1998, p. 13, 15)9 was used. Each experiment consisted of  500 replications. 
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9The generator has two components of order five, and is implemented in TSP 4.5. The maximal period length of the 
generator is about 1.07×1096, compared with the conventional period length of 2.15×109.  



The efficiency of  OLS and LTS was evaluated by the mean squared error (MSE) around the true 

parameter values. Table 2 reports major results for OLS, LTS, and LTS-OLS. The table also 

reports timing (in minutes) for all 500  replications of  OLS, LTS, and LTS-OLS. 500,25 =×

In experiment 1, the data-generating process coincides with the full ideal conditions of  

the linear regression model. No wonder that the OLS had a clear advantage in efficiency, yielding 

the lowest MSE. Interestingly, even with no regression outliers, the combined LTS-OLS 

algorithm achieved some improvement over LTS. The gain in efficiency was about 10 per cent, 

most noticeably for large n. Thus, the introduction of  Steps 4 and 5 does result in improved 

efficiency of  estimating regression parameters. 

In the second experiment with a single regression outlier, the OLS estimator broke down 

spectacularly, especially with high leverage outliers. On the other hand, parameter estimates by 

both LTS and LTS-OLS were always bounded as long as the number of  outliers did not exceed 

the robustness limit s. Overall, this theoretical property of  high-breakdown robust estimators 

was verified for all sample sizes. However, both LTS and LTS-OLS broke down when the 

number of  outliers surpassed s. Finally, there was the same efficiency of  LTS and LTS-OLS for 

both low and high leverage points, indicating that, unlike OLS,  these robust estimators are not 

sensitive to outliers in both Y- and X-directions.  

Most importantly, the Monte Carlo experiment showed that the most substantial gains in 

efficiency of  the LTS-OLS algorithm can be expected with large n and substantial number of  

planted outliers. For example, for 60=n  and  regression outliers the 

MSE of  LTS was 30.8, while for LTS-OLS it was just 4.9. Similarly, for 

25]2/)960[(60 =−−=s

100=n  and 

, regression outliers the MSE of  LTS increased to 33.0, while for 

LTS-OLS the MSE, in fact, dropped to 2.4.  

45]2/)9100[(100 =−−=s

Therefore, the combined use of  LTS and OLS estimators appears to provide both robust 

and fast solution for setting apart the regular part of  analyzed data. As the last row of  table 2 

shows, on the whole 2,500 repetitions of  the LTS-OLS algorithm took about 42 minutes (for 
 9



100=n ) on a standard personal computer, or slightly more than 1 second per repetition of  LTS-

OLS algorithm.  

Once LTS-OLS algorithm differentiates the initial basic subset B , the recursive ordering 

of  remaining observations proceeds as follows. 

1

 

TEST ALGORITHM (PART 2) 

Step 6. For r , calculate  and . 1B∈ ( ) rrrrr YXXX ''ˆ 1−=β )/(ˆ knSSRs rrr −=

Step 7. Ford , calculate standardized prediction residuals 1B∉

drrdrdd xXXxxw 1'' )(1)ˆ −+βdy( −=  and studentized prediction residuals rdd sw ˆ=t .  

Step 8. Ford , sort observations by absolute values of   w  and t , and store the smallest 

ones among d  as  and t . 

1B∉ d t

1B∉ )1( +hw )1( +h

Step 9. Extend subset  with an observation, for which w  or t  are the smallest. Define the 

augmented subset as , and go to step 6.  

1B d t

2B

Step 10. Continue until the estimation subset contains 1−n  observations. 

Step 11. Calculate  and t  for the n)(nw )(n
th observation, and stop. 

 

B.  GOODNESS-OF-FIT TEST, BASED ON STUDENTIZED PREDICTION RESIDUALS 

The test statistic is calculated from the sequence of  studentized prediction residuals t , 

,…, , . Under the null hypothesis , the sequence of  studentized 

prediction residuals approximately follows the Student’s t-distribution with 

)1( +h

)2( +ht

,−

)1( −nt

,1+

)(nt

,

),0( 2σε N∼

1,2 −−−−− knknkhkh …  degrees of  freedom (Cook, Weisberg, 1982). In order to 

achieve the highest power, the test searches for a particular studentized prediction residual that 

violates the null hypothesis most significantly.  

Note that the null distribution in the sequence of  test statistics t , ) ,…, , t  

depends on the varying degrees of  freedom, which precludes their direct comparison. To remove 

the impact of  varying degrees of  freedom, one solution is to calculate two-tail probabilities of  

)1( +h 2( +ht )1( −nt )(n
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absolute test statistics )1( +ht , )2( +ht ,…, )1( −nt , )(nt

i

, and then identify the most substantial break 

in the series by the smallest two-tail probability.  

Another alternative, which is better suited for tabulating critical values of  the test, is to 

convert each studentized prediction residual t  into a normal deviate with an equivalent two-tail 

probability. Then such normalized statistics can be compared directly. Hawkins (1991, p. 223) 

recommended to use normalizing transformation, developed by Wallace (1959, p.1125): 

)1(log
38
18 2* vtv

v
vz e +

+
+=                                                                                       (2) 

where t denotes studentized residual with corresponding v degrees of  freedom. 

Another transformation, also due to Wallace (ibid.) is more precise for small degrees of  

freedom: 

212

22**

)}1({log)38(184.0

)1(log)}1(log{1
38

21
2

−

−

++=

++



 −

+
−=

vt
v

vs

vtvvtve
v

z

e

ee
s

                                   (3) 

 Finally, the following normalizing transformation from the ACM algorithm 395 (Hill, 

1970) is especially accurate. For tail probabilities as small as 10 , the transformation  has 

absolute error of  about 0.0001 for v . Then it rapidly decreases to less than 0.000001 for 

: 

11−

10≅

100≥v

)1(log)5.0()5.0(48

)1008.0(10
855240334)3(

22

4

3573
***

vtvwvb

wbb
wwww

b
wwwz

e +−=−=

++
+++−++=

                                                (4) 

Using any of  these transformations, the sequence of   t , ,…, ,   is 

transformed into the sequence of  normalized  test statistics z , z ,…, z , , and the 

final test statistic for the first goodness-of-fit test is  

)1( +h

( +h

)2( +ht

)

)1( −nt

)(nz

)(nt

)1( +h 2 )1( −n

izz sup~ =                                                                                                                 (5)  

for nnhh ,1,...,2,1 −++=i . 
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How the statistical significance of  z~ statistic (5) can be evaluated? Though repeated data 

permutations by the size of  various residuals increase the test power, they simultaneously 

introduce complicated interdependencies in the data. As a result, the analytical distribution of  z~  

becomes intractable. Yet, the distribution of  z~  statistic under the null can be approximated by 

the Barnard’s (1963) Monte Carlo inference, which is specifically designed for cases when the 

distribution of  a test statistic is not known (Gentle, 1998, p. 141-142). The method proceeds as 

follows:  

• Generate many subsets of  artificial data according to the null hypothesis H , 

where  does not have to be explicitly specified. This is because studentized prediction 

residuals belong to the class of  pivotal statistics, with distribution of  z~  independent of  

unknown parameters 

)N(0,~: 2
0 σε

2σ

β  and . Thus, without loss of  generality, the null distribution of  z~  

can be obtained with arbitrary values of  

2σ

β  and . For example, one can simply fix all 

unknown parameters 

2σ

β  to zero and set , generating artificial data as12 =σ ε=By , 

N(0,1)~ε . 

• The test statistic z~  is calculated from ( 1×n ) vector  and (By kn × ) actual matrix X. The 

calculated bootstrap test statistic z~  is stored. The procedure is repeated B times. Upon 

completing, all test statistics z~  are sorted in absolute values.  

B

B

• Count how many times the actual test statistic z~  exceeds ~ , with approximate p-value 

equal to 

Bz

(∑
=

>
+

=
B

s
s zzI

B
zp

1

~~
1

1)~(ˆ ) , where )(⋅I is the indicator function.  

Under the mild regularity conditions, it can be shown that as B , the estimated p-value 

 will tend to the true p-value  (Horowitz, 1997). Moreover, the Monte Carlo 

approximation for pivotal and two-sided test statistics (like ~ ) makes error of  order O . In 

contrast, the traditional asymptotic approximations make errors of  size O , thus supporting 

∞→

)~(ˆ zp )~(zp

z )( 2−n

)( 1−n
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the advantage of  using the Bernard’s procedure to approximate the p-value of  highly non-

standard (but pivotal) z~ .  

k,1

G

 

2C. GOODNESS-OF-FIT TEST  BASED ON RECURSIVE RESIDUALS. 

The second test essentially applies the Shapiro-Wilk and Shapiro-Francia test statistics to 

recursive residuals , but takes into account the assumed zero mean of  each .  iw iw

After the endogenous sorting of  all n observations is complete, recursive residuals  are 

calculated for 

iw

nnk ,1,...,2 −++=i  by (1). Let w ),...,,(' )()2()1( knwww −=G  be a vector of  ordered 

)( kn −  recursive residuals, and let  be an ordered sample from a standard 

normal distribution N(0,1). Define the expected values of  order statistics from 

)( knx −≤)2( ...x ≤≤)1(x

)1,0(N  by vector 

.  )knm −,...,, 21 m(' mm =

A well known property of  the normal distribution is that it is invariant under linear 

transformations. Let w  be the ordered sequence of  recursive residuals w . If  

vector w

)()2()1( ,...,, knww −

G  comes from a normal distribution N , then ),( 2σµ ( ) imiwE σµ +=)(
G , where mi is ith  

element of  vector m. Accordingly, the plot of   wG  on the vector m should tend to be linear, while 

normalized deviations from this linear relationship can  indicate to what extent the vector of  

recursive residuals approaches the hypothesized normal distribution.  

The postulated zero mean of  regression disturbances implies 0=µ , with the plot of  wG  

on m passing through the origin. Then the extent of  linear relationship between  and m can be 

evaluated by the uncentered R  statistic after estimating regression specification w

wG

i
2

imσ=)(
G  by the 

OLS estimator. 

Since elements of  vector )()2()1( ,...,, knwwww −=G  have been sorted by OLS residuals, they 

are not independent. Thus, the OLS estimate of  wmmmOLS
G')'( 1−=σ̂  will be unbiased, but 

inefficient. The inefficiency can be avoided by using the Aitken’s GLS estimator, which yields the 
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fully efficient and unbiased estimate wQmmQmGLS
G111 ')'(ˆ −−−=σ , where Q is the )()( knkn −×−  

variance-covariance matrix of  the normal order statistic.  

2000≤≤ n

2000≤≤ n

500=

n,1α m )

,1 057974.0315065.0n +=α ni ,1=

2007909 g n,1≠

The GLS is most attractive from the efficiency standpoint. However, the GLS requires 

not only m, but also Q. Tietjen Kahaner and Beckman (1977) calculated exact values of  Q by a 

highly cumbersome double numerical integration, and only for n=2(1)50. In contrast, exact 

values of  m are less computationally-intensive, and were calculated by Harter (1961) for 

n=2(1)100(25)250(50)400. Fortunately, a number of  approximations for m and Q have been 

proposed in the literature.  

Approximations of  m 

• Royston (1982) developed two algorithms (NSCOR1 and NSCOR2) which currently are the 

most precise. NSCOR1 calculates m  in the same way as was done by Harter (1961), with 

absolute error as small as 0.0000001 for 2 . NSCOR2 is a rational approximation 

for m. This algorithm does not require numerical integration. As a result, NSCOR2 is 

significantly faster than NSCOR1, with accuracy no worse than  0.0001 for 2 . I 

found that it took NSCOR1 about 9 minutes to calculate matrix m with n , while 

NSCOR2 did this in just 3 seconds. The largest absolute difference between the alternative 

estimates of  m was only 0.00004.  

• Harter (1961, p. 155) suggested to use  to approximate , m , and  1 n ,1( nα  for the rest of  

expected order statistics, with  for 2g009776.0−g and 

 for ),1( .0058212.0327511.0 gn −+=α i (with g = log10n). The formula achieves 

accuracy of  0.002 for 4002 ≤≤ n . 

Approximations of  Q 

• Algorithm of  Davis and Stephens (1978) is currently the best available approximation with no 

limit on the dimension of  Q. 
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• Gupta (1952) noted that if  the variance-covariance matrix Q is replaced by the identity matrix, 

the loss of  efficiency would be negligible (in fact, setting IQ =  yields the OLS estimator 

wmmmOLS
G')'(ˆ 1−=σ ). Later it was found that inefficiency of   OLSσ̂  not only diminishes 

asymptotically (Ali, Chan, 1964),  but also already becomes negligible for small n. For example, 

Barnett (1976, p. 49) showed that for 8=n  the relative inefficiency of  OLSσ̂  (compared with 

GLSσ̂

OLS

) is 0.9989, and it gradually rises to 0.9991 for larger n. Therefore, the Gupta’s estimator 

σ̂  is not only convenient, but also sufficiently accurate for most practical purposes. 

To evaluate the postulated linearity between vectors wG  and m, I will consider three 

goodness-of-fit statistics, from which I subsequently pick up the best one after studying their null 

distribution and relative power.  

The first statistic is basically the uncentered version of  the Shapiro-Wilk (1965) test 

statistic:  

                                   
ww

wa
GG
G

'
)'( 2

0 =W                                                                                          (6) 

  mQQmQm 111 ''' −−−=a                                                                     (6’) 

The second test statistic results from the application of  Gupta’s estimator to (6’), with IQ = . 

This produces [ ] 21''' −= mmmb , producing the uncentered version of  Shapiro-Francia (1972) 

statistic:     

   ( ) ( )
( ) )'('

'
'

)'()'(
'

' 2122

0 wwmm
wm

ww
mmwm

ww
wb

GGW
G

GG
G

GG
G

===′
−

                                     (7)  

Clearly,  are uncentered correlation statistic R0W ′ ),(2 mwG , or squared correlation coefficient 

between wG  and m. Consequently, (7) can also be alternatively calculated as  

             
∑

∑ −
−=′

2

2

0

)ˆ(
1

i

OLSii

w
mw
GW

G σ
                                                                (8) 

Finally, the third test statistic results from using the Aitken estimator GLSσ̂  in (8) instead of  
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slightly less efficient OLSσ̂ : 

σ̂

,0(

                  

    
∑

∑ −
−=′′ 2

2

0

)ˆ(
1

i

GLSii

w
mw
GW

G σ
                                                                (9) 

Test statistics (6)-(9) are, like z~ statistic in (5), scale and origin invariant. Therefore, the 

Barnard’s Monte Carlo inference can be used to calculate the null distribution of  these test 

statistics.  

 

3. APPROXIMATE DISTRIBUTION OF GOODNESS-OF-FIT STATISTICS UNDER THE NULL. 

The null distribution of  each test statistics (6)-(9) is dependent on a particular configuration of  

matrix X, the sample size n  and the number of  independent variables k. Similarly to the null 

distribution of  Durbin-Watson statistic, this precludes the unique tabulation of  exact percentage 

points that can be applied to any regression model. Though in this section I do report selected 

quintiles for test statistics, they should be considered only as rough benchmarks. The application 

of  Barnard’s procedure to actual model at hand should be always a preferred approach.  

Principally, the percentage points in Tables 3 and 4 are presented to compare the 

sensitivity of  test statistics to alternative ways of  their computation. First, I investigated how 

different normalization to the z~ statistic  (such as z ,  and )  affect quintiles of  * **z ***z z~ . 

Second, I examined differences in calculated values of  W  and W  statistics that apply GLS 

and OLS estimates of  

0′ 0 ′′

, respectively10. 

The percentage points were simulated for 100)20(20=n  and , with 2000 

replications. Using econometric software TSP (version 4.5), I generated matrix X from the 

uniform distribution 

4=k

)1U , while regression disturbances were generated as standard normal 

deviates N(0,1).  

                               

10 In the univariate case Weisberg (1974) detected only minor differences in percentage points of related Shapiro-
Wilk and Shapiro-Francia  statistics. If the same close agreement occurs with respect to estimated regression 
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Table 3 reports percentage points of  ~z , and its difference with arguably less accurate  

normalizing transformation ~z . The table shows that the two versions of  z

***

* ~  statistic turned out 

fairly close even for 20=n , with the maximum absolute difference just 0.0013. The discrepancy 

further disappears with increasing sample size. For 100=n the difference does not exceed 0.0001. 

Table 4 contains percentage points for W , W  and absolute difference between W  

and W  statistics. The following features are noteworthy: 

0 0′ 0′

0 ′′

1. For a specific quintile, each test statistic approaches unity as the sample size n increases. This 

property is typical for the original univariate Shapiro-Wilk and Shapiro-Francia tests. 

2. The maximal difference between related W  and W  test statistics is very insignificant even 

for 

0′ 0 ′′

20=n  (0.00014), and drops rapidly to 0.00003 for 40=n , and to 0.00002 for 100=n .  

Thus, there seems to be little justification for the extra effort in calculating the GLS-based 

 statistic.  0W ′′

3. Critical values for W ,  and  statistics are much smaller compared with 

corresponding univariate tests for normality for the same sample size n. For example, with 

0 0W ′ 0W ′′

20=n , 5%, the critical values of  W  and Shapiro-Wilk statistics are 0.576 and 0.983, 

respectively.  

0

 

4. ILLUSTRATIVE EXAMPLE 

To illustrate the calculation of  suggested test statistics, I will use a regression model and data 

from Mankiw et al. (1992, table II, p. 420). Dependent variable was GDP per working-age person 

in 1985, while independent variables included  (i) investment/GDP ratio, (ii) the sum of  growth 

rates of  labor, technology, and depreciation rate, (iii) the percentage of  working-age population 

                                                                                                                                                        

0 ′′residuals, then there is hardly any gain in calculating a more computer-intensive test statistic W  
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in secondary school. All variables were in logs11. Though Mankiw et al. estimated the specification 

with three international cross-sections  (with 98, 75, and 22 countries), I will consider the 

smallest cross-section with OECD countries. Table 5 tracks major steps in the test algorithm. 

To find the global LTS minimum, the elemental set algorithm requires evaluation of  

subsets, which is feasible. After finding the exact LTS minimum, all n observations 

were sorted by the absolute values of  their LTS residuals. After selecting subset B  with 

 smallest  LTS residuals, OLS fit was applied to these 13 observations. 

Then observations in B  were resorted by absolute values of  their OLS residuals. Though 

rankings by LTS and OLS residuals are quite similar, Australian moves from rank 6 (when ranked 

by LTS residuals) to rank 1 (when ranked by OLS residuals in Steps 4-5). Japan also changed its 

rank from 8 (with LTS) to 7 (with OLS).  

315,7
4
22

=








[ 422( ++=h

1

] 132/)1 =

1

Once the first subset B  with h regular observations is formed, the recursive extension 

of  estimation subset begins. During the first recursion, the least deviant observation among 

1

9)( =−hn  potential outliers is Spain, with , and 2347.0)( −=hw 3008.3)( =ht .  

After storing these test statistics, Spain is included in the estimation subset B , OLS 

parameters are calculated with h  observations, and  and 

1

1+ iw it  are calculated for the 

remaining 8 potential outliers. During the second recursion, Italy has the smallest absolute value 

of  standardized (and studentized) test statistics. These test statistics (  and 2403.0)1( −=+hw

3949.2)1( =+ht ) are stored, Italy is included in the estimation subset , and the algorithm seeks 

the next least deviant observation. Eventually, the estimation subset contains 21 observations, 

with Turkey being the last observation in the endogenous ranking of  countries.  

2B
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At the next step test statistics are calculated. First, consider the calculation of  izsup=z~  

statistic.  The first studentized prediction residual is t  Under the null, the statistic 

approximately follows Student’s t-distribution  with 

.3008.3=h

4)1 91( =−−+= hv  degrees of  freedom. 

The two-tail probability for tb is 0.009218, which corresponds to the standard normal deviate 

2.6039. Likewise, the next studentized prediction residual has two-tail probability 0.037643, 

which corresponds to the standard normal deviate 2.0787, and so on.  

After completing the normalizing transformation, the largest among them yields 

7221.2sup~ == izz . The test statistic separates Greece, as well as more extreme Portugal and 

Turkey, from the rest of  the sample. These 3 countries form the subset of  most probable 

outliers. 

What is the probability that these deviant observations does not correspond to the 

postulated data-generating process of  the linear regression model? To answer the question, the 

Barnard’s Monte Carlo test is used, using the actual matrix X, and regression disturbances 

generated under the null ε  ~ ) . Without loss of  generality, one can set and ,0( 2σN 12 =σ

04321 ==== ββββ .  

After calculating the test statistic z~  with artificial data B times, approximate p-

value of  ~  was 

999=

z ( ) 319.0
1000

1)7221.2(ˆ
1

== ∑
=

B

s
sZIp > Z . Thus, under the null hypothesis of  ε  

~ ) , it is quite likely that Greece, Portugal, and Turkey correspond to the postulated 

data-generating process

,0( σN 2

12.  

Before calculating the second set of  test statistics W , W , and W , it is instructive to 

visually assess the linearity between sorted w  and  (see chart 1). The linear pattern is 

especially  distorted by three negative observations (which, in fact, represent Greece, Portugal, 

0 0′ 0 ′′

)( i im
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and Turkey, already identified by z~  statistic), and by the largest positive w  which refers to 

Canada.  

)( i

0

=

) =i

.5

) =i

Using data from table 5, W , W , and W  are calculated as follows: 0′ 0 ′′

83152.096025.162999.1')'( 2
0 == wwwaW GGG , 

84216.096025.130941.01)ˆ(1 2
(

2
)(0 =−−−=′ ∑∑ OLSii wmwW GG σ ,  

or alternatively, 

{ } ( ) 84216.096025.17115.150929''
22

)()()(0 ==′=′ iiiiii wwmmwmW GGG , 

84214.096025.1309451)ˆ(1 2
(

2
)(0 =−−−=′′ ∑∑ GLSii wmwW GG σ , 

using the Aitken estimator 0.32262ˆ =GLSσ  (compared with 0.32415ˆ =OLSσ ). 

Approximate p-values for these W , W , W  statistics were 0.320, 0.359, and 0.359 

respectively. As before, I used 999 test runs with data, simulated under the null hypothesis

0 0′ 0 ′′

13.   

Even though the difference between  W  and W  should be the most noticeable in 

small samples, note that the use of  the more efficient Aitken estimator makes little difference 

between W  and W , with essentially the same test statistics and p-values. Due to such little 

differences between W  and W  , I will hereafter concentrate on more dissimilar W  and W  

statistics. 

0′ 0 ′′

0′ 0 ′′

0′ 0 ′′ 0 0′

5. THE POWER OF GOODNESS-OF-FIT STATISTICS 

How different is the power of  suggested goodness-of-fit tests compared with available 

misspecification tests? To save space, I will consider z~  statistic, calculated with the Hill’s 

normalizing transformation (4), and also W  and W  statistics. Their power is compared with 

the following groups of  standard specification tests. 

0 0′

                                                                                                                                                        

20= 72.2=z12  The p-value may also be checked in Table 3. For n , the test statistic ~  corresponds to 0.300 
percentage point. 
13 On the other hand, from Table 4 percentage points for  W , W , W  statistics were approximately 0.350, 0.380, 0 0′ 0′′
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GENERAL MISSPECIFICATION TESTS AGAINST UNSPECIFIED ALTERNATIVES 

1. RESET test of  Ramsey (1969);  

2. Durbin-Watson test;  

3. ANOVA test for structural change of  Chow (1960); 

TESTS, BASED ON RECURSIVE RESIDUALS 

4. CUSUM (Brown et al., 1975); 

5. CUSUM of  Squares (ibid.); 

6. ψ-test  (Harvey and Collier, 1977);   

TESTS FOR REGRESSION OUTLIERS 

7. studentized residual test (Cook and Weisberg, 1982); 

8. recursive test for multiple regression outliers (Hadi and Simonoff, 1993); 

TESTS FOR HETEROSKEDASTICITY 

9. White’s test to detect heteroskedasticity of  unknown form; 

10. Godfrey, Breusch, and Pagan’s test to detect heteroskedasticity of  known form;  

TESTS FOR UNIVARIATE NORMALITY 

11. Jarque-Bera test; 

12. Shapiro-Wilk test.  

Unless otherwise indicated, matrix X contained the intercept, and logs of  labor and 

capital inputs from table 7.1 in Green (1997, p. 345), with 27=n . Data-generating process was 

iiY ε= , with N(0,1)~iε . 

I examined the  following violations in the full ideal conditions:  

GROUP 1. REGRESSION OUTLIERS WITH NON-ZERO MEAN OF REGRESSION DISTURBANCES 

1-1. N(7,1)~iε , i  1=

1-2. N(7,1)~iε , i  5,...,1=

1-3. N(7,1)~iε , i  10,...,1=

                                                                                                                                                        

 21
and 0.380. 



1-4. N(7,1)~iε , i 13,...,1= 14 

1-5. One high leverage outlier N(7,1)~iε , ; 1=i 30=n , k .  and  are distributed 

as U(0,15); but ,  

3= 1X 2X

20)1(1 =X 20)1(2 =X

1-6. Five high leverage outliers. The same as 1-5, but with  5,...,1=i

GROUP 2. HETEROSKEDASTIC REGRESSION DISTURBANCES. 

2-1. N(0,10)~iε ,  5,...,1=i

2-2. N(0,10)~iε ,  10,...,1=i

2-3. N(0,10)~iε ,  13,...,1=i

2-4.  for all observations ( 4
2

4
1 10101 XXY ++= ε )

GROUP 3. OMITTED VARIABLES AND NON-LINEARITY 

3-1.  for all observations. ε+= 2
24XY

3-2. ε4.1=Y   
GROUP 4. NON-NORMALITY OF  REGRESSION DISTURBANCES 

4-1. Cauchy distribution 

4-2. Log-normal distribution 

4-3. Exponential distribution 

4-4. Laplace distribution 

4-5. Uniform distribution. 

The total number of  replications in each Monte Carlo experiment was 500. Some tests 

crucially depend on the ordering of  observations. Since these Monte Carlo experiments mimic 

cross-sectional data, with no ‘natural ordering’ of  data, I selected an ordering by values of  OLS 

predicted values, which is often applied in practice. 

The nominal level for individual tests was set at 5 per cent. I also studied the joint 

application of  z~  statistic together with either W  or W  statistics. To keep the joint significant 

level for these two pairs of  tests no larger than 5 per cent, the Bonferroni inequality was used

o 0′

15.  

Some of  considered tests statistics had only asymptotic justification, which often resulted 

in  actual size of  test statistic under the null substantially less than nominal size of  5 per cent. 

                                                 

14 Note that for n=27 and k , . 3= 13=−= hns
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The discrepancy was the most substantial with the Jarque-Bera test for normality, which is valid 

only asymptotically. To eliminate this bias in reported test power, I calculated for each test its 

exact critical values under the null. These finite-sample adjustments were used in all Monte Carlo 

experiments. 

Table 6 contains major results of  the Monte Carlo study. Initially, I will consider the 

power of  individual z~ , W , and W  tests. Then I will proceed to the power of  using z~ -W  

and -W  tests jointly. 

0 0′ 0

z~ 0′

The power of  z~  statistic is relatively high with one, five, and ten mean-shift regression 

outliers (experiments 1-1, 1-2, 1-3). The test power remains high in the following cases: (i) 

outliers, planted at  both low-leverage and high-leverage points; (ii) abrupt shifts in the variance 

of  ε ; (iii) omitted variables; (iv) incorrect functional form;  (v) non-normal distributions with 

long tails.  

Compared with other tests, z~  statistic demonstrated a wide-ranging sensitivity to 

misspecification errors, with just two cases of  low power: first, with as many as 13 discordant 

observations (experiment 1-4), and when the distribution of  ε  had short tails (such as the 

uniform distribution in experiment 4-5).  

The power of  W  and  test statistics was very similar. Both tests are especially 

sensitive to large number of  outliers with non-zero mean, and to non-normal distributions with 

short tail. 

0 0W ′

However, a few times the power of  W  was substantially higher (compare 0.266 of   W  

versus 0.340 of  W  in experiment 1-2).  W  also had advantage over W  in detecting the effect 

of  omitted variables and non-linearity of  regression function (experiments 3-1 and 3-2), among 

0′

0′

0

0′ 0

                                                                                                                                                        

o 0′
15 With  individual significance levels for z~  and W  (or W ) tests  set to 2.5 per cent. 
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other cases, thus making W  as a preferable test statistic. W  also simpler to calculate, since it 

does not require the cumbersome calculation of  the covariance-variance matrix Q.  

0′ 0′

There was an explicit complimentarity between  z~ , on the one hand, and either W  or 

 statistics, on the other hand. Not surprisingly, the joint use of  z~ -W  and z~ - W  (denoted 

in table 6 as J-1, and J-2, respectively) detected basically the whole range of  considered 

regression misspecifications. Compared with W , the higher power of  W  became partially 

obscure in their joint application with  

0

0W ′ 0 0′

0 0′

z~ . Yet again, results for the combination of  z~  and W  

were marginally better (as especially evident in experiment 3-1). Consequently, this pair of  test 

statistics appears to be the best choice to detect a wide range of  possible (and unspecified) 

specification errors, especially common to cross-sectional data. 

0′

In contrast, the power of  most conventional specification tests was much less 

comprehensive. For example, the ostensibly “general” RESET test had non-trivial power only in 

cases when failures of  full ideal conditions were related to the matrix X (experiments 1-5 and 1-

6). However, when the correspondence was absent, RESET’s power was consistently 

insignificant. Similarly disappointing power was shown by other ostensibly “general tests”, 

including Durbin-Watson, ψ-test, and Chow structural stability test. The low power of  these tests 

is due to their dependent on correct ordering of  observations (such as the separation of  data 

into two ‘regimes’, assumed to be knows in these tests. Though I used ordering by the predicted 

values, in many cases this ordering turned out unrelated to the true misspecification pattern, 

resulting in poor performance of  conventional ‘order-dependent’ specification test.  

The best power among standard tests was achieved by the Hadi-Simonoff  test of  

multiple outliers. Though in general its power was close to the power of  z~ test, the superiority 

of  the latter test was often substantial, especially in cases of  5 and 10 regression outliers. The 

case of  5 outliers, planted at high leverage points (experiment 1-6), shows the susceptibility of  
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Hadi-Simonoff  test to the masking effect, especially compared with the power of  z~  test (0.150 

and 0.674, respectively).  

 

6. CONCLUSIONS 

This paper introduced several tests to evaluate distributional assumptions of  the classical 

regression model. In particular, the paper suggested using a high breakdown regression (LTS) to 

detect violations of  the full ideal conditions, with a substantial increase in the power of  the tests, 

particularly in the case of  LTS-OLS algorithm. Another useful feature of  the suggested tests is 

that they do not assume any specific alternative hypothesis. The paper found that similar 

omnibus test statistics included the Had-Simonoff  test and Shapiro-Wilk normality test. 

However, they had a lower power than tests suggested in this paper, especially the joint use of  

and W  statistics. The omnibus property makes redundant the current practice of  running the 

battery of  various specification tests with often unknown joint significance level. 

z~ 0′

It remains unclear if  the application of  other high-breakdown estimators would lead to 

any further improvements in power. This seems to be a promising extension of  the present work. 
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Table 1. Number of elemental sets with various versions of PROGRESS code. 
n k Required m to find the 

global LTS minimum 
ϖ Sufficient m 

for 01.0<ρ
Default dm ρ  for default dm

50 2                       1,225  0.500 16 1000 1×10-125

50 3                     19,600  0.500 35 1500 1×10-87

50 4                   230,300  0.500 72 2000 9×10-57

50 5                2,118,760  0.500 145 2500 3×10-35

50 6               15,890,700  0.500 293 3000 3×10-21

50 7               99,884,400  0.500 590 3000 6×10-11

50 8             536,878,650  0.500 1180 3000 8×10-6

50 9          2,505,433,700  0.500 2353 3000 3×10-3

 
 
Table 2. Efficiency comparison of OLS, LTS, and LTS-OLS estimators with different extent 
of outlier contamination.  

 Low leverage outliers High leverage outliers 
Sample  20 60 100 20 60 100 
Outliers OLS 
None 13.2 2.4 1.2 13.2 2.4 1.2 
One 12,876.5 478.9 154.5 7,423.5 3,572.4 1,038.2 
h/2 29,516.7 2,157.5 1,912.8 32,289.2 24,500.5 18,150.8 
H 11,842.8 5,030.6 2,517.7 19,006.9 19,784.2 16,476.2 
h+1 19,146.1 4,942.6 3,149.8 32,377.1 18,942.8 16,289.2 
Timing 0.3 0.4 0.4 0.4 0.4 0.3 

 LTS 
None 50.1 13.1 8.0 50.1 13.0 8.0 
One 54.9 13.0 8.1 54.9 13.0 8.1 
h/2 52.7 14.5 9.9 52.7 14.5 9.9 
H 35.9 30.8 33.0 35.9 30.8 33.0 
h+1 92,441.3 437.4 130.0 41,942.9 21,857.3 1,852.7 
Timing 12.0 24.0 41.1 13.2 27.1 37.3 

 LTS-OLS 
None 50.0 12.0 7.0 50.0 11.9 7.0 
One 54.1 12.0 7.2 54.1 12.0 7.2 
h/2 51.0 11.4 6.6 51.0 11.4 6.6 
H 23.5 4.9 2.4 23.5 4.9 2.4 
h+1 93,636.7 1,114.9 336.1 40,460.7 21,263.1 2,436.4 
Timing 13.1 25.0 42.1 14.3 28.1 38.3 
Notes: the number independent variables k was 9 (including intercept); matrix X with low leverage points was 
generated from U(0,15) distribution with seed 100; matrix X with high leverage points was generated from 
N(10,10) distribution with seed 1000; regression disturbances were generated as standard normal deviates with 
seed 200; each experiment included 500 replications. “Timing” is the total time required for 500  
replications in 5 experiments (in minutes).  

500,25 =×
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Table 3. Selected quintiles of z~  statistics. 
 ****** sup~

izz =  **** ~~ zz −  

n 20 40 60 80 100 20 40 60 80 100
0.900 2.21 2.27 2.31 2.34 2.40 .0007 .0001 .0000 .0000 .0000
0.800 2.31 2.36 2.39 2.44 2.51 .0012 .0002 .0001 .0000 .0000
0.700 2.40 2.43 2.47 2.53 2.60 .0010 .0001 .0001 .0000 .0000
0.650 2.44 2.47 2.50 2.57 2.64 .0008 .0002 .0001 .0000 .0000
0.600 2.47 2.51 2.54 2.61 2.67 .0010 .0002 .0001 .0000 .0000
0.550 2.50 2.55 2.58 2.65 2.71 .0012 .0004 .0001 .0000 .0000
0.500 2.54 2.58 2.61 2.69 2.76 .0011 .0002 .0001 .0000 .0000
0.450 2.58 2.61 2.66 2.74 2.81 .0010 .0004 .0001 .0001 .0000
0.400 2.62 2.66 2.71 2.79 2.86 .0013 .0002 .0001 .0001 .0000
0.350 2.67 2.70 2.75 2.84 2.91 .0011 .0006 .0001 .0001 .0000
0.300 2.72 2.76 2.80 2.89 2.98 .0012 .0002 .0001 .0001 .0000
0.250 2.79 2.80 2.86 2.95 3.05 .0012 .0002 .0001 .0001 .0000
0.200 2.86 2.86 2.93 3.03 3.11 .0013 .0003 .0001 .0001 .0000
0.150 2.94 2.95 3.03 3.11 3.20 .0012 .0003 .0001 .0001 .0001
0.100 3.07 3.07 3.14 3.23 3.29 .0011 .0004 .0002 .0001 .0001
0.050 3.26 3.28 3.33 3.41 3.48 .0003 .0004 .0002 .0001 .0001
0.025 3.42 3.48 3.51 3.59 3.66 .0013 .0005 .0002 .0001 .0001
0.010 3.64 3.71 3.72 3.84 3.87 .0011 .0007 .0003 .0002 .0001
0.005 3.78 3.84 3.89 3.91 3.94 .0010 .0008 .0003 .0002 .0001

Note: test statistic ~z  was calculated by (4); test statistic ** sup iz=~z was calculated by (2). ****** sup iz=
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Table 4. Selected quintiles of , and  tests. 0W 0W ′ 0W ′′
 oW  oW ′  oWW ′′−′0  
n    20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

0.900    0.951 0.967 0.976 0.981 0.984 0.952 0.969 0.977 0.982 0.985 .0001 .0000 .0000 .0000 .0000
0.800    

    
    
    
    
    
    
    
    
    
    
    
    
    
    

0.933 0.957 0.968 0.975 0.979 0.934 0.959 0.970 0.976 0.980 .0000 .0000 .0000 .0000 .0000
0.700 0.916 0.948 0.962 0.969 0.974 0.916 0.949 0.963 0.970 0.975 .0000 .0000 .0000 .0000 .0000
0.650 0.906 0.943 0.958 0.966 0.971 0.907 0.944 0.959 0.967 0.972 .0001 .0000 .0000 .0000 .0000
0.600 0.897 0.936 0.954 0.963 0.968 0.898 0.938 0.954 0.963 0.968 .0001 .0000 .0000 .0000 .0000
0.550 0.888 0.929 0.949 0.958 0.965 0.887 0.930 0.950 0.959 0.965 .0000 .0000 .0000 .0000 .0000
0.500 0.877 0.921 0.944 0.954 0.961 0.875 0.923 0.945 0.955 0.961 .0001 .0000 .0000 .0000 .0000
0.450 0.863 0.912 0.939 0.948 0.957 0.859 0.914 0.939 0.948 0.957 .0001 .0000 .0000 .0000 .0000
0.400 0.846 0.903 0.931 0.943 0.952 0.847 0.902 0.933 0.944 0.953 .0000 .0000 .0000 .0000 .0000
0.350 0.832 0.893 0.924 0.936 0.945 0.832 0.892 0.925 0.936 0.946 .0000 .0000 .0000 .0000 .0000
0.300 0.812 0.880 0.915 0.928 0.939 0.811 0.881 0.915 0.929 0.939 .0000 .0000 .0000 .0000 .0000
0.250 0.785 0.863 0.904 0.918 0.931 0.785 0.863 0.903 0.919 0.931 .0000 .0000 .0000 .0000 .0000
0.200 0.751 0.845 0.888 0.908 0.921 0.749 0.845 0.888 0.909 0.920 .0001 .0000 .0000 .0000 .0000
0.150 0.717 0.818 0.868 0.893 0.908 0.719 0.817 0.868 0.893 0.907 .0001 .0000 .0000 .0000 .0000
0.100 0.662 0.776 0.846 0.871 0.892 0.666 0.778 0.845 0.871 0.891 .0001 .0000 .0000 .0000 .0000
0.050 0.576 0.716 0.797 0.833 0.860 0.580 0.717 0.797 0.833 0.859 .0000 .0000 .0000 .0000 .0000
0.025    

    
    

0.518 0.663 0.752 0.797 0.828 0.525 0.660 0.751 0.797 0.828 .0000 .0000 .0000 .0000 .0000
0.010 0.482 0.602 0.697 0.748 0.774 0.492 0.606 0.696 0.743 0.774 .0000 .0000 .0000 .0000 .0000
0.005 0.468 0.558 0.679 0.718 0.744 0.476 0.566 0.680 0.717 0.744 .0000 .0000 .0000 .0000 .0000

Note: test statistics , and  were calculated by  (6), (7)-(8), and (9), respectively. 0W 0W ′ 0W ′′
Reference: 5% critical values value for Shapiro-Wilk statistics -  for n=20:  0.983; for n=40:  0.987.  
5% critical values value for Shapiro-Francia statistics -  for n=80:   0.994; for n=100:  0.995. 
 
 

 31



Table 5 . Illustrative example. 
  εCountries

LTS  Rank 
of LTSε

Unsorted iw Sorted )(iw Exact im ia it v Two-tail 
prob. of it

***
iz

1 Australia 0.013 6
2 Belgium 0.000 1
3 Switzerland 0.000 2
4 Netherlands 0.000 3
5 New Zealand 0.000 4 0.004798 -0.699774 -1.820032 -0.488522
6 Germany 0.013 5 0.003823 -0.670700 -1.350414 -0.325853
7 Japan 0.034 8 -0.030719 -0.533521 -1.065728 -0.254458
8 Sweden 0.024 7 0.016617 -0.512288 -0.848125 -0.202592
9 UK 0.044 9 -0.047092 -0.240255 -0.664795 -0.158851

10 France 0.069 10 0.067700 -0.234764 -0.501582 -0.119878
11 Finland 0.087 11 -0.053951 -0.086826 -0.350837 -0.083862
12 Austria 0.099 12 -0.086826 -0.053951 -0.207735 -0.049660
13 Denmark 0.144 13 0.164375 -0.047092 -0.068803 -0.016448
14 Spain 0.278 14 -0.234764 -0.030719 0.068803 0.016448 3.300786 9 0.009218 2.603849
15 Italy 0.292 15 -0.240255 0.003823 0.207735 0.049660 2.394887 10 0.037643 2.078721
16 Norway 0.305 16 0.288183 0.004798 0.350837 0.083862 2.401803 11 0.035120 2.106968
17 Canada 0.379 17 0.359943 0.016617 0.501582 0.119878 2.537724 12 0.026047 2.225510
18 USA 0.431 18 0.320430 0.067700 0.664795 0.158851 1.896853 13 0.080286 1.749031
19 Ireland 0.437 19 -0.512288 0.164375 0.848125 0.202592 2.785164 14 0.014600 2.442144
20 Greece 0.782 20 -0.699774 0.288183 1.065728 0.254458 3.158925 15 0.006487 2.722100
21 Portugal 0.939 21 -0.670700 0.320430 1.350414 0.325853 2.423169 16 0.027614 2.202721
22 Turkey 1.031 22 -0.533521 0.359943 1.820032 0.488522 1.699376 17 0.107472 1.609662

Source: Mankiw et al. (1992), specification in the last column of Table II, p. 420.  
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Chart 1. Illustrative example: plot of ordered recursive residuals iwG  on the expected values of order statistic .  im
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Step 6. Monte Carlo results 
 z~ 0W 0W ′ J-1 J-2 RESET DW Chow  Cusum Cusum

squares
Ψ-test STUD HS WHITE GBP SW JB 

1.1. N(7,1)~iε ,  1=i .992 .106 .216 .988 .988 .016 .014 .074 .062 .488 .030 .996 .992 .976 .116 .808 .942 
1.2. N(7,1)~iε ,  5,...,1=i .930 .266 .340 .916 .916 .000 .008 .000 .000 .030 .000 .014 .890 .150 .018 .134 .078 
1.3. N(7,1)~iε ,  10,...,1=i .854 .988 .992 .944 .940 .000 .012 .002 .000 .000 .000 .000 .806 .040 .022 .898 .000 
1.4. N(7,1)~iε ,  13,...,1=i .010 .480 .488 .446 .446 .000 .014 .002 .056 .000 .002 .000 .104 .008 .002 .692 .000 
1.5. High leverage, N(7,1)~iε ,  1=i .920 .114 .168 .892 .892 .976 .368 .732 .008 .930 .036 .934 .968 .972 .982 .288 .546 
1.6. High leverage N(7,1)~iε ,  5,...1=i .674 .148 .144 .602 .604 1.000 .950 .982 .088 .982 .382 .040 .150 .098 .002 .036 .032 
2.1. N(0,10)~iε ,  5,...,1=i .782 .056 .110 .708 .708 .080 .058 .034 .254 .728 .174 .660 .786 .148 .040 .634 .734 
2.2. N(0,10)~iε ,  10,...1=i .556 .018 .028 .444 .444 .028 .034 .036 .132 .256 .084 .390 .566 .024 .006 .566 .528 
2.3. N(0,10)~iε ,  13,...,1=i .370 .004 .014 .268 .268 .034 .042 .036 

 

 

.116 .248 .058 .288 .388 .040 .002 .352 .344 

2.4.  ( )4
2

4
1 10101 XXY ++= ε .422 .050 .076 .364 .366 .062 .096 .058 .152 .548 .114 .390 .422 .372 .588 .208 .306 

3.1.  ε+= 2
24XY .368 .614 .734 .460 .482 1.000 1.000 1.000 1.000 1.000 1.000 .292 .340 1.000 .888 .126 .108 

3.2.  ε4.1=Y .624 .292 .372 .600 .604 .498 .270 .220 
 

.006 .910 .038 .516 .610 .456 .682 .374 .462 
4.1. Cauchy distribution .946 .544 .628 .916 .916 .090 .078 .044 .108 .772 .070 .892 .948 .104 .088 .914 .922 
4.2. Log-Normal distribution .910 .910 .932 .964 .966 .066 .058 .034 

 
 
 

.036 .578 .022 .826 .906 .134 .076 .962 .942 
4.3. Exponential distribution .564 .514 .608 .660 .664 .040 .036 .038 .068 .266 .028 .478 .562 .094 .078 .766 .672 
4.4. Laplace distribution .320 .022 .038 .244 .246 .044 .044 .046 .056 .194 .038 .304 .324 .072 .048 .266 .334 
4.5. Uniform distribution .016 .186 .192 .158 .152 .026 .066 .048 .054 .022 .030 .002 .008 .040 .056 .144 .000 
Summary: cases  with power above 0.200 15 8 9 16 16 4 4 4 2 12 2 12 14 5 4 13 11 
The following abbreviations are used in the table:  DW – Durbin-Watson test; STUD – test of maximum studentized residual; HS – Hadi-Simonoff test; WHITE – White’s test; GBP – 
Godfrey, Breusch, and Pagan’s test; JB – Jarque-Bera test; SW – Shapiro-Wilk test. 
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